Scholar Publishing Group
International Journal of Big Data Intelligent Technology
https://doi.org/10.38007/1JBDIT.2025.060215

ISSN 2790-0932 Vol. 6, Issue 2: 139-146 Open Access Soumnals

The Impact of Distributed Data Query Optimization on
Large-Scale Data Processing

Jin Li
Morgan Stanley, 65 Irby Ave NW, Atlanta, GA, 30305, US

Keywords: Distributed Data Query, Data Optimization, Large Scale Data Processing,
Performance Improvement, System Bottleneck

Abstract: With the rapid advancement of big data technology, distributed architecture has
become the mainstream in the industry when processing massive amounts of information.
However, when dealing with such large datasets, the query efficiency and performance of
the system become key factors that constrain its response speed and accuracy. This study
analyzed the key performance bottlenecks of distributed data queries, such as storage
response latency, hardware processing capacity limits, and data consistency assurance.
Based on this, a series of targeted improvement measures were proposed. Specifically, in
terms of distributed storage network latency, hardware resource upgrade requirements,
and data consistency maintenance, research has proposed solutions such as optimizing
data distribution, regularly upgrading hardware facilities, and adopting distributed locking
strategies. After implementing these optimization measures, query response can be
accelerated, data accuracy can be ensured, and hardware costs and maintenance expenses
can be reduced. The research results show that these optimization methods can enhance
the overall performance of processing large-scale data systems.

Introduction

In the era of information explosion, the rapid increase in data volume makes it difficult for
traditional independent data processing facilities to meet the demand for high-speed and accurate
data queries. Distributed architecture has become the preferred solution for dealing with massive
data processing due to its scalability and powerful data processing efficiency. With the continuous
deepening application of distributed data systems, how to improve query efficiency and overcome
obstacles in data processing has become an urgent challenge. The obstacles to query efficiency
mainly stem from the slow response of storage systems, bottlenecks in hardware processing
capabilities, and difficulties in ensuring data consistency in distributed environments, which directly
affect the timeliness of queries and the accuracy of results. This article will explore these issues and
propose a series of optimization strategies to improve the overall performance of large-scale data
processing systems.

Copyright: © 2025 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

139



International Journal of Big Data Intelligent Technology

1. Query bottleneck in large-scale data processing
1.1 Delay of Distributed Storage Systems

In distributed architectures that handle massive amounts of information, the response time of
storage nodes becomes a core obstacle that constrains performance. This type of storage system
typically distributes information across numerous servers in order to enhance the scalability and
stability of data queries.However, data calls between different nodes can cause network latency
issues, especially when dealing with large amounts of data requests, where this latency is more
prominent. If a query operation requires the mobilization of information from multiple servers, each
remote data acquisition is accompanied by network transmission delay, which prolongs the
feedback time of the entire query. In addition, distributed storage systems also need to address the
challenges of duplicate data storage and replica synchronization. Although redundant backup of
data enhances the system's error resistance, the process of data replication and synchronization also
brings additional latency. The response time of storage nodes can reduce the efficiency of data
reading and may also lead to fluctuations in query results, especially when the system is under high
load, this problem becomes more prominent.

1.2 System throughput is limited by hardware during queries

In distributed data queries, system throughput is one of the key indicators to measure its
performance. The strength of throughput directly determines the agility of system response and the
ability to handle multiple tasks. However, in many distributed information processing frameworks,
hardware infrastructure often becomes a limiting factor that hinders further improvement of system
throughput capacity.Especially based on traditional hardware structures, it is difficult to meet the
efficient and concurrent query requirements of massive data in terms of storage and computing node
performance. The limitations of hardware facilities such as hard disk input/output efficiency, central
processing unit computing power, and network transmission bandwidth are the main reasons for the
limited query processing capabilities. Even though distributed storage has been implemented for
data, data interaction between nodes is still constrained by hardware conditions, making it
impossible to fully unleash system performance. When the system load reaches its peak, insufficient
hardware resources may lead to server overload and slow down the system's response speed. In
some scenarios where a large number of concurrent query requests need to be processed, hardware
resource limitations may lead to a backlog of query tasks and delayed responses, affecting the
overall operational efficiency of the system.

1.3 Inconsistencies in Data in Distributed Systems

In a distributed architecture, maintaining data consistency has become an important bottleneck
due to information being segmented and stored on numerous server nodes. Data consistency refers
to the ability of each server node's data to remain synchronized throughout the entire system,
ensuring that the data obtained by users is accurate and updated. However, in a distributed
environment, ensuring data consistency becomes extremely difficult due to factors such as network
transmission delays, server failures, or asynchronous data replication. In high concurrency data
reading scenarios, different server nodes may access different versions of data, leading to
inconsistencies between query results. This type of data inconsistency phenomenon is particularly
sensitive in business scenarios that require high precision, such as financial data analysis and
real-time monitoring systems. Although many distributed systems adopt the "ultimate consistency"
principle in CAP theory to enhance system availability and fault tolerance, "ultimate consistency" is

140



International Journal of Big Data Intelligent Technology

not equivalent to real-time consistency and may still result in discrepancies between query results
and actual data. In order to overcome the problem of inconsistent data, the system needs to adopt
complex coordination mechanisms, such as distributed locking and transaction control. The
introduction of these mechanisms can alleviate the problem, but it also increases query latency and
system complexity, which has an impact on performance.

2. Optimization strategy for distributed data query
2.1 Optimize data distribution to reduce network latency impact

The core purpose of optimizing data distribution is to reduce the frequency of data interaction
between nodes through scientific segmentation and reasonable arrangement of data. The commonly
adopted methods include data segmentation and data location optimization processing. Data
segmentation generally divides a dataset into numerous parts based on specific attributes (such as
user ID, timestamp, etc.), and then stores these parts independently on different servers. By
segmenting and storing data on geographically adjacent servers, it is possible to reduce remote data
calls for query requests and prevent unnecessary data traffic consumption. Determining appropriate
segmentation keywords and segmentation schemes is a crucial step in practice.

Taking the transaction query function in the banking industry as an example, when a customer
initiates a query, their historical transaction data may be scattered across numerous servers. If all
transaction records of the same customer are stored in a single server, only that server can be
involved in the query, thereby avoiding cross server data exchange and reducing query response
time. A distributed system consists of N nodes, each storing S data items, and each query request
requires access to data from D nodes. If the optimized distribution of data can reduce cross node
access, the total latency T can be expressed as:

T=(N-k)xLxD (1)

In formula (1), k represents the number of cross node accesses reduced by optimizing data
distribution, L is the network transmission delay, and D is the amount of data queried each time. By
optimizing data distribution and reducing unnecessary cross node access (i.e. reducing k), the
system's query latency can be reduced and query efficiency can be improved.

2.2 Regularly updating server hardware to maintain high throughput

The update of computing resources has a direct impact on system throughput. With the rapid
development of processor technology, most current servers are equipped with efficient multi-core
processors, which can process a large amount of computing work in a shorter time and improve the
parallel processing level of the system.The size of memory capacity is equally critical, as it can
reduce latency caused by frequent data exchange and alleviate disk 1/O pressure, ensuring the speed
of data processing and querying. In addition, with the innovation of storage technology, the
application of solid-state drives (SSDs) has gradually replaced traditional mechanical hard drives
(HDDs), accelerating the speed of data reading. When dealing with a large number of read requests,
the performance advantages of SSDs are more prominent. The increase in network bandwidth is
also key to maintaining high system throughput, especially when processing massive amounts of
data, which requires strong local computing power and data transmission between different nodes.
The increase in network bandwidth enables faster data transfer between nodes, reduces query
waiting time, and improves overall system throughput efficiency.

To verify the positive impact of regular hardware updates on system processing capabilities, we
can measure their effectiveness through data analysis. The following data table 1 is derived from

141



International Journal of Big Data Intelligent Technology

performance testing of a large-scale e-commerce website, with the aim of comparing the effect of
hardware upgrades on improving system processing efficiency before and after. This data reflects
the specific changes in system processing capabilities after performing regular hardware update
operations.

Table 1. Changes in system throughput after regular hardware updates

. Processor Memory Storage Netwgrk Throughput (queries
Cycle time : bandwidth
type capacity (GB) type per second)
(Gbps)
. Dual core
Initial state CPU 16 HDD 1 500
First year Four core
update CPU 32 SSD 2 800
Second year | Eight core
update CPU 64 SSD 4 1200
Third year | Sixteen core NVMe
update CPU 128 SSD 10 1800

Observing the data shown in Table 1, as hardware iteration upgrades are carried out year by year,
there is a growing trend in the number of processor cores, memory space, storage medium types,
and network transmission bandwidth, which promotes the annual increase in system throughput.
Regular hardware upgrades enhance the processing performance and data transmission efficiency of
the system, ensuring that even under the enormous pressure of large-scale data queries, the system
can maintain high data processing throughput and fast response time.

2.3 Introduction of Distributed Lock Mechanism

Ensuring data synchronization and concurrency management is the core when conducting data
queries in distributed systems. Especially in situations with high concurrency, many query
operations may read and write the same data resource concurrently, resulting in data inconsistency
issues. Adopting a distributed locking mechanism is a key way to improve query efficiency and
maintain data consistency in order to prevent data errors and ensure the accuracy of query results.
Distributed lock is a synchronization control mechanism that spans multiple nodes, ensuring that
only one node can access specific data resources at any given time, avoiding data conflicts. In
traditional distributed architectures, ordinary locking mechanisms are not applicable due to the
relative independence of each node. Distributed locks manage and allocate locks through
coordinated services such as Zookeeper, etcd, Redis, etc., ensuring effective coordination of
resources between nodes and implementation of access control.

On an e-commerce platform, when many consumers try to place orders for a popular product at
the same time, there is a high possibility of oversold inventory. After adopting the distributed lock
mechanism, any request must first obtain lock qualification to ensure that only one server node can
make changes to inventory information at any given moment, and the remaining nodes need to
queue and wait. This mechanism has N nodes, and the application and release actions of locks are
uniformly regulated by a coordination service (such as Zookeeper). Whenever a node needs to
access a common resource, it will actively attempt to apply for a lock. If the lock is already
occupied by another node, the current node must wait. The time for each node to obtain a lock is
Tlock, and in high concurrency, lock competition may result in an average waiting time Twait. The
total delay Ttotal can be expressed as:

142




International Journal of Big Data Intelligent Technology

Ttotal = Tiock + Twait = Tiock + X Tlock

()
N-1

In formula (2), N the probability of each node waiting for a lock is represented, and Tlock is
the time required to obtain the lock. After adopting distributed locking technology, although the
processing time of individual nodes slightly increases, it ensures data consistency, effectively
prevents conflicts in concurrent operations, and enhances the overall robustness of the system. In
the process of distributed data processing, the use of distributed locks can restrict concurrent access,
maintain data consistency, perform efficient concurrency control for systems in high load
environments, improve query efficiency, and ensure stable system operation. This mechanism
ensures the consistency of inventory data and avoids issues such as duplicate charges or inaccurate
inventory caused by concurrent operations.

3. Optimize the impact on large-scale data processing
3.1 Significant reduction in query response time

The core of improving the operational efficiency of distributed data query systems lies in
reducing query response time, which is one of the most important performance metrics in massive
data processing frameworks. The reduction of query response time requires comprehensive
consideration from multiple dimensions, such as rationalization of data layout, enhancement of
hardware facilities, reduction of network transmission latency, and optimization of concurrent
processing. After adopting these improvement measures, the system can maintain efficient response
and reduce query waiting time when dealing with numerous query demands.

In the conventional distributed system data query process, due to issues such as imbalanced data
allocation, limited device resources, and network bandwidth bottlenecks, data requests need to cross
multiple nodes, causing delays in data transmission and processing and resulting in extended
response times. By adjusting the data layout strategy, reducing the frequency of data calls between
nodes, enhancing device performance, and reducing network transmission latency, the system
response speed can be accelerated. When users on a certain e-commerce platform query product
information, the system needs to quickly provide accurate results. If data distribution is improper or
device resources are scarce, user requests may encounter significant delays that affect the user
experience. Through reasonable planning of data slicing, regular hardware upgrades, and
optimization of query execution schemes, the query response time has been successfully reduced
from 2 seconds to 1 second, and the query processing capability has been improved by 50%. The
following is a quantitative analysis of the optimization effectiveness, showing the comparison data
of query response time before and after optimization.

Observing the data in Table 2, it can be observed that the optimized distributed data query
system has shortened the response time of queries and improved the overall performance of the
system. Especially in environments with large amounts of data and frequent concurrent requests,
optimization results are particularly outstanding. With these improvements, the system can
efficiently handle numerous concurrent queries, enhancing the overall user experience.

143



International Journal of Big Data Intelligent Technology

Table 2. Query response time before and after optimization

Query Query throughput Number of S
o . . ystem
Optimization measures response time (number of queries data access load
(seconds) per second) nodes
Initial state 2.0 200 5 high
Data Fils_trlbgtlon 15 300 4 in
optimization
Hardware upgrade (CPU, 19 350 3 low
memory)
Fully optimized
(distributed locking, 1.0 400 2 low
network enhancement)

3.2 Enhancement of Data Accuracy Assurance

In a wide range of distributed data query scenarios, data accuracy is the key to ensuring system
stability and reliability. With the increase in data size and query frequency, there is a challenge in
maintaining data consistency and accuracy under highly concurrent conditions. Especially when
multiple nodes are processing data simultaneously, data inconsistency and conflicts are highly
likely to have adverse effects on the system.

Distributed architectures that address this issue often rely on data consistency protocols and
transaction processing strategies to solve it. For example, strong consistency protocols such as the
two-stage commit protocol and Paxos protocol ensure synchronization among nodes when updating
data, maintaining consistency between data replicas. The distributed transaction control method
ensures that data changes are either completely completed or completely revoked to prevent data
inconsistency. Taking inventory management on online shopping platforms as an example, in the
face of multiple users simultaneously purchasing a product, distributed lock technology plays a key
role in avoiding simultaneous modification of the same data by different nodes. The use of a lock
mechanism system can ensure that only one node can make changes to inventory data at any given
time, preventing issues such as overselling. With these optimization strategies, the system can avoid
conflicts and inconsistencies in data updates, ensure the accuracy of data queries, and maintain
system stability and efficiency in high load environments.

3.3 Reduction in hardware resource investment

In widely distributed data processing architectures, the investment scale of hardware facilities
directly affects the economic investment and operational efficiency of the system. In the face of
processing large amounts of data, the conventional approach is to expand processing units, memory
space, and storage resources. However, by implementing optimization methods for data retrieval, it
is possible to effectively reduce resource requirements and improve system efficiency without
increasing hardware costs.

By making reasonable adjustments to data layout, reducing information exchange between nodes,
and enhancing query processing speed, the system has reduced its dependence on devices.
Appropriate data segmentation and localization processing can ensure that most query tasks are
completed within the corresponding nodes, reduce data exchange between nodes, and alleviate the
pressure on network bandwidth and storage resources. In addition, distributed caching strategies can
temporarily store frequently accessed data in memory, reducing the occupation of hard disk storage
and lowering the demand for storage devices.

144



International Journal of Big Data Intelligent Technology

4. Conclusion

After deeply analyzing the performance bottlenecks in the distributed retrieval process, this study
proposes a series of targeted improvement measures and further analyzes the actual effectiveness of
these measures in processing massive amounts of data. Research has found that by improving data
layout, periodically upgrading hardware facilities, and adopting distributed locking technology,
retrieval latency can be shortened, data consistency can be improved, and hardware investment and
operation costs can be reduced. These improvement measures have enhanced the retrieval capability
of the system, providing a more reliable and durable technical guarantee for big data management.
In the future, with the continuous advancement of technology, the optimization of distributed data
retrieval will evolve towards higher efficiency and intelligence, helping large-scale data processing
systems to be deeply applied in many fields. The results of this study have important practical
significance for optimizing the performance of large-scale data processing systems and reducing
their operational burden.

References:

[1] Deepthi B. Gnana, et al. "An efficient architecture for processing real-time traffic data streams
using apache flink."Multimedia Tools and Applications 83.13(2023):37369-37385.

[2] Trinh Thanh, et al. "A novel ensemble-based paradigm to process large-scale data.
"Multimedia Tools and Applications 83.9(2023):26663-26685.

[3] Lin Zihang, et al. "SciSciNet: A large-scale open data lake for the science of science
research.” Scientific data 10.1(2023):315-315.

[4] Kontou Eftychia E, et al. "UmetaFlow: an untargeted metabolomics workflow for
high-throughput data processing and analysis." Journal of cheminformatics 15.1(2023):52-52.

[5] Su H, Luo W, Mehdad Y, et al. Lim-friendly knowledge representation for customer
support[C]//Proceedings of the 31st International Conference on Computational Linguistics:
Industry Track. 2025: 496-504.

[6] Su Jinshu, et al. "Technology trends in large-scale high-efficiency network computing.”
Frontiers of Information Technology & Electronic Engineering 23.12(2022):1733-1746.

[7]1 Zou, Y. (2025). Design and Implementation of a Cloud Computing Security Assessment Model
Based on Hierarchical Analysis and Fuzzy Comprehensive Evaluation. arXiv preprint
arXiv:2511.05049.

[8] Liu, B. (2025). Design and Implementation of Data Acquisition and Analysis System for
Programming Debugging Process Based On VS Code Plug-In. arXiv preprint
arXiv:2511.05825.

[9] Zhu, P. (2025). The Role and Mechanism of Deep Statistical Machine Learning In Biological
Target Screening and Immune Microenvironment Regulation of Asthma. arXiv preprint
arXiv:2511.05904.

[10] Chang, Chen-Wei. "Compiling Declarative Privacy Policies into Runtime Enforcement for
Cloud and Web Infrastructure." (2025).

[11] F. Liu, "Transformer XL Long Range Dependency Modeling and Dynamic Growth Prediction
Algorithm for E-Commerce User Behavior Sequence,” 2025 2nd International Conference o'n
Intelligent Algorithms for Computational Intelligence Systems (IACIS), Hassan, India, 2025,
pp. 1-6, doi: 10.1109/1AC1S65746.2025.11211467.

[12] F. Liu, "Architecture and Algorithm Optimization of Realtime User Behavior Analysis System
for Ecommerce Based on Distributed Stream Computing,” 2025 International Conference on
Intelligent Communication Networks and Computational Techniques (ICICNCT), Bidar, India,
2025, pp. 1-8, doi: 10.1109/ICICNCT66124.2025.11232744.

145



International Journal of Big Data Intelligent Technology

[13] Q. Hu, "Research on Dynamic Identification and Prediction Model of Tax Fraud Based on
Deep Learning,” 2025 2nd International Conference on Intelligent Algorithms for
Computational Intelligence Systems (IACIS), Hassan, India, 2025, pp. 1-6, doi:
10.1109/1AC1S65746.2025.11211426.

[14] D. Shen, "Complex Pattern Recognition and Clinical Application of Artificial Intelligence in
Medical Imaging Diagnosis,” 2025 International Conference on Intelligent Communication
Networks and Computational Techniques (ICICNCT), Bidar, India, 2025, pp. 1-8, doi:
10.1109/ICICNCT66124.2025.11232821.

[15] X. Liu, "Research on User Preference Modeling and Dynamic Evolution Based on Multimodal
Sequence Data,” 2025 2nd International Conference on Intelligent Algorithms for
Computational Intelligence Systems (IACIS), Hassan, India, 2025, pp. 1-7, doi:
10.1109/1AC1S65746.2025.11211273.

[16] Ding, J. (2025). Intelligent Sensor and System Integration Optimization of Auto Drive System.
International Journal of Engineering Advances, 2(3), 124-130.

[17] Mingjie Chen. (2025). Exploration of the Application of the LINDDUN Model in Privacy
Protection for Electric Vehicle Users. Engineering Advances, 5(4), 160-165.

[18] Liu, X. (2025). Research on Real-Time User Feedback Acceleration Mechanism Based on
Genai Chatbot. International Journal of Engineering Advances, 2(3), 109-116.

[19] Zhang, M. (2025). Research on Collaborative Development Mode of C# and Python in
Medical Device Software Development. Journal of Computer, Signal, and System Research,
2(7), 25-32.

[20] Wang, Y. (2025). Intervention Research and Optimization Strategies for Neuromuscular
Function Degeneration in the Context of Aging. Journal of Computer, Signal, and System
Research, 2(7), 14-24.

146



	Keywords: Distributed Data Query, Data Optimization, Large Scale Data Processing, Performance Improvement, System Bottleneck
	Abstract: With the rapid advancement of big data technology, distributed architecture has become the mainstream in the industry when processing massive amounts of information. However, when dealing with such large datasets, the query efficiency and pe...
	Introduction
	1. Query bottleneck in large-scale data processing
	1.1 Delay of Distributed Storage Systems
	1.2 System throughput is limited by hardware during queries
	1.3 Inconsistencies in Data in Distributed Systems

	2. Optimization strategy for distributed data query
	2.1 Optimize data distribution to reduce network latency impact
	2.2 Regularly updating server hardware to maintain high throughput
	2.3 Introduction of Distributed Lock Mechanism

	3. Optimize the impact on large-scale data processing
	3.1 Significant reduction in query response time
	3.2 Enhancement of Data Accuracy Assurance
	3.3 Reduction in hardware resource investment

	4. Conclusion
	References:

