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Abstract: In this paper, we propose a Multi-level Prediction D-star algorithm (MLP D-star) 

based on threat cost to address the path planning problem of mobile robots in local 

unknown environments. The algorithm improves the node expansion of the D-star 

algorithm using a multi-level prediction structure, which avoids excessive turning points in 

the planned path. The cost function of this algorithm incorporates threat cost and heuristic 

function to prevent the issue of path crossing obstacles. Simulation results demonstrate that 

the improved MLP D-star algorithm has advantages in terms of real-time performance, 

practicality of path results, safety, and computational efficiency.  

1. Introduction 

The path planning of a mobile robot refers to the process of computing a safe path from the 

current position to a given target point [1]. As part of the autonomous exploration of mobile robots, 

path planning can be divided into global static path planning and local dynamic path planning based 

on the robot's operational state [2]. On the one hand, global static path planning involves computing 

a collision-free path based on prior static map information, typically using the shortest distance as a 

criterion for evaluating the path's quality. On the other hand, local dynamic path planning involves 

the robot using real-time sensor data to detect unknown obstacles and making local adjustments to 

the global path to avoid obstacles and move towards the target point. In 1959, Dijkstra [3] proposed 

the Dijkstra algorithm, which uses a greedy approach to compute the shortest path from a node to 

all other nodes. The algorithm is simple to implement and has low time complexity but can be 

time-consuming. In 1968, Hart et al. [4] extended Dijkstra's algorithm and introduced the A* 
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algorithm, which uses a heuristic function to guide the search direction and avoid exhaustive search 

in all directions. A* gradually became the mainstream path planning algorithm due to its improved 

overall search efficiency. However, it is not suitable for path planning in dynamic environments. To 

address this issue, Stantz [5] proposed a reverse incremental search algorithm called D-Star in 1994, 

based on A* and Dijkstra's algorithms. This algorithm is applicable to path planning problems in 

unknown environments [6]. Over the years, D-Star algorithm has been widely used in various 

mobile robots and even employed as a path search algorithm in the US Mars rover "Phoenix" [7]. In 

2002, Koenig et al. [8] introduced the D* Lite algorithm, which incorporates a heuristic function to 

significantly improve search efficiency. However, when the forward direction of the current path is 

impassable, the search efficiency decreases significantly. In 1998, Lavalle et al. [9] proposed the 

Rapidly-Exploring Random Trees (RRT) algorithm, which is a random sampling-based search 

algorithm. It gradually expands the tree nodes to cover the entire map, and when the expanded node 

reaches the target point, the optimal path search is completed. However, the randomness of 

expansion in this algorithm leads to lower exploration efficiency. In 2000, Kuffner et al. [10] 

proposed the RRT-Connect algorithm, which utilizes two random trees for simultaneous search. In 

2011, Karaman et al. [11] introduced the RRT* algorithm based on incremental sampling. In 1986, 

Khatib [12] proposed the Artificial Potential Field (APF) method, which describes a virtual force 

field. By establishing a repulsive field for obstacles and an attractive field for the target point, the 

robot generates a safe path through the combined effect of attraction and repulsion, enabling 

autonomous obstacle avoidance and reaching the target point. In 1997, Fox et al. [13] presented the 

Dynamic Window Approach (DWA), which utilizes sampling to predict the robot's motion using 

multiple combinations of linear and angular velocities. The trajectories are evaluated using a 

scoring function, and the optimal combination is selected to drive the robot for obstacle avoidance. 

This method transforms the path planning problem into a constrained optimization problem in the 

vector space [14]. 

Path planning in a partially unknown environment is a complex problem that requires robots to 

rapidly and accurately plan paths based on limited environmental information, as well as adapt to 

path replanning caused by environmental changes [15]. This technology assists robots in achieving 

efficient, precise, and safe movements in complex environments, as well as better accomplishing 

task objectives.  

Currently, the commonly used path planning algorithm is the A-star algorithm. However, the 

A-star algorithm performs global planning only once. When environmental changes affect the path, 

such as encountering dynamic obstacles during traversal along the planned path, the A-star 

algorithm requires re-planning. Therefore, a drawback of this algorithm is its inability to utilize 

information generated from the previous planning to reduce computation and planning time. The 

D-star algorithm, also known as the Dynamic A-star algorithm, can utilize cost information from the 

previous planning during subsequent planning, thereby reducing computation. Consequently, it is 

considered a more intelligent path planning algorithm suitable for unknown environments. In this 

chapter, the research on autonomous exploration path planning for robots in unfamiliar 

environments is conducted based on the D-star algorithm. Improvements are made to the 

exploration strategy and cost function of the D-star algorithm, resulting in the proposal of the 

Threat-Cost-Based Multilayer Estimated D-star algorithm. 

2. Design Principles and Drawbacks of the D-star Algorithm  

2.1The Design Principles of D-star Algorithm 

The D-star algorithm is a dynamic reverse path search algorithm based on the foundations of 
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the A-star algorithm and the Dijkstra algorithm. It is suitable for path planning in unknown 

environments. Given the current environmental information, the starting point, and the target point, 

this algorithm expands the search from the target point towards the starting point. Once the starting 

point is discovered, it backtracks the path based on the backtrace pointers of each node, ultimately 

completing the path planning from the starting point to the target point. However, when the 

environmental information changes and affects the nodes along the planned path, the algorithm 

initiates a local path replanning step. By calculating the cost values of the nodes affected by the 

environmental changes, the algorithm selects a better trajectory, thus achieving dynamic adaptation. 

The D-star algorithm reduces the computational cost of path node backtracking through its 

reverse search mechanism when solving path planning problems in unknown environments. It only 

requires local path adjustments when dealing with dynamic obstacle threats, avoiding global 

replanning. This approach not only enables local obstacle avoidance but also improves the 

efficiency of the algorithm. 

The cost function of the D-star algorithm is shown as follows: 

   f n h n                (1) 

Where,  h n represents the total cost value from the target point to the current node. 

     ,h n h o c o n                (2) 

Where, ( , )c o n represents the estimated cost from node o to node n . The change in cost 

( )h n during the D-star algorithm's execution occurs in two places. Firstly, during the path search 

process, when the neighboring nodes of the current node are expanded, if it is possible to achieve a 

lower cost ( )h n , it is updated according to Equation (2). Secondly, during the execution of the 

completed path planning process, when encountering obstacles, the cost ( )h y  of obstacle nodes is 

modified by ( , , )insert x y val . 

The D-star algorithm consists primarily of two functions, namely the Process-State( ) function 

and the  Modify-Cost( ) function, referred to as P and M respectively in the following text. The main 

purpose of the P function is to compute the optimal path cost and generate the optimal path, while 

the M function dynamically updates the planned path by updating the cost values of nodes in the 

path and modifying the table entries. The algorithm follows the execution process outlined below: 

Step1: Create two lists, namely OPEN list and CLOSE list, and add the goal node to the OPEN 

list.  

Step2: Check if the OPEN list is empty. If there are no nodes in the OPEN list, terminate the 

algorithm as the path planning has failed. Otherwise, check if the node corresponding to the 

minimum estimated cost in the OPEN list is the starting point. If true, the path planning is successful, 

and proceed to step 3. If false, add this node to the CLOSE list and add the neighboring nodes to 

the OPEN list. Continue with this step.  

Step3: Traverse back to the goal node following the backtracking pointers. If there are 

environmental changes that affect the nodes in the path, perform local replanning by adding the 

previous node of the changed node to the OPEN list. Then, return to step 2. If there are no changes, 

proceed to step 4.  

Step4: Path planning is complete. 

The pseudocode is shown in Figure 1: 
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Figure 1. Pseudocode Design for the D-star Algorithm 

2.2 The Drawbacks of D-star Algorithm 

The D-star algorithm belongs to the category of dynamic path planning algorithms. As the robot 

traverses the initial path, encountering obstacles allows the algorithm to perform local replanning 

using the previous planning information. This approach avoids redundant calculations, making the 

algorithm suitable for path planning in unknown environments. However, the D-star algorithm has 

limitations when applied in practice.  

Firstly, in the D-star algorithm, the selection of neighboring nodes for expansion is limited to the 

8-neighborhood directions of the current node. Additionally, the original algorithm's cost function 

includes the cost of moving from the current node to the next node. Consequently, the generated 

path often exhibits excessive turns or zigzag patterns. This phenomenon can hinder the robot's 

efficiency during autonomous exploration in safe areas.  

Secondly, when performing path planning, the D-star algorithm strictly considers obstacles as 

occupying the grid cells. As a result, the generated path may be close to or even pass through 
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narrow gaps between adjacent obstacles. Deploying the D-star algorithm on a robot could lead to 

instances where the robot scrapes or collides with obstacles. 

3. Threat-Cost-Based Multi-level Prediction D-star Algorithm  

In this section, we focus on the expansion of nodes and the cost function in the D-star algorithm. 

Based on this, we propose a Threat-Cost-Based Multi-level Prediction D-star algorithm to achieve 

path planning for mobile robots in locally unknown environments.  

3.1. Exploration Strategy of the MLP D-star Algorithm 

The D-star algorithm commonly utilizes the 8 neighborhood method for node expansion, where 

the algorithm traverses the surrounding area from the current node. In Figure 2, the directions 

indicated by the black line segments represent the 8 neighborhood expansion directions. It can be 

observed that the D-star algorithm restricts the minimum change in path angles to / 4 , resulting 

in frequent rotations when deploying the algorithm within a robotic system for path planning. 

 

Figure 2. Schematic Diagram of the Multi-Level Predictive Structure 

Based on the above description, in this section, following the neighborhood concept, the 

second-layer outer neighborhood of the node 1 16T T:  is also included in the node expansion range. 

This is illustrated by the red line segments in Figure 2. 

The definition of the multi-level predictive structure is shown in Equation (3) as follow: 

  , | 2, 2i i i i O i Os x y x x y y             (3) 

Where, is represents the set of neighboring nodes of the current node,  ,O Ox y represents the 

coordinates of the current node, and  ,i ix y  represents the coordinates of the neighboring nodes of 

the current node. 

 In the multi-level predictive structure diagram, each cell's center point represents the location of 

the robot. Assuming the current position of the robot is at node O, when the D-star algorithm 

performs neighborhood expansion at the current node, it not only estimates the cost for the 

neighboring nodes represented by  1 2 8, , ,G G GL  (8-neighborhood expansion) but also includes 

cost estimation for the second-layer neighborhood represented by  1 2 16, , ,T T TL , where the node O 

is located. Considering that node O is not directly adjacent to the second-layer neighborhood, the 
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outer nodes of  1 2 8, , ,G G GL can only be reached through the first-layer neighborhood node O. If 

1G is an obstacle node with an infinite cost estimation, the robot will be unable to reach the three 

outer nodes of 1 15 16, ,T T T . Therefore, the cost value of the first-layer neighborhood node 

 1 2 8, , ,G G GL directly affects the passage between node O and the outer neighborhood nodes 

 1 2 16, , ,T T TL , and it is numerically represented as an increase in the estimated cost for moving 

from node O to the outer neighborhood nodes. In light of the aforementioned scenario, the 

following neighborhood expansion strategy is proposed in this section: 

(1) When node 1G  is an impassable obstacle, expansion of node 1 15 16, ,T T T is abandoned. When 

node 2G is an impassable obstacle, expansion of node 1 2 3, ,T T T is abandoned. When node 3G is an 

impassable obstacle, expansion of node 3 4 5, ,T T T is abandoned. When node 4G is an impassable 

obstacle, expansion of node 5 6 7, ,T T T is abandoned. When node 5G is an impassable obstacle, 

expansion of node 7 8 9, ,T T T is abandoned. When node 6G is an impassable obstacle, expansion of 

node 9 10 11, ,T T T is abandoned. When node 7G is an impassable obstacle, expansion of node 

11 12 13, ,T T T is abandoned. When node 8G is an impassable obstacle, expansion of node 13 14 15, ,T T T is 

abandoned. 

(2) When multiple first-layer expanded neighborhood nodes from Expansion Strategy 1 are 

obstacles, it will impose cumulative constraints on the second-layer expanded neighborhood nodes. 

The above expansion strategies increase the expansion directions by a factor of 1, reducing the 

minimum change in path angles in the D-star algorithm to / 8 . This effectively avoids redundant 

rotations of the robot, to a certain extent, reducing path cost. At the same time, Expansion Strategy 

2 ensures that when the first-layer neighborhood nodes are obstacles, it does not directly generate 

paths from parent nodes to the second-layer neighborhood nodes. This avoids computing invalid 

path costs and guarantees the feasibility of generating paths. 

3.2. Cost Function of the MLP D-star Algorithm 

When conducting path planning, the D-star algorithm strictly considers obstacles as belonging to 

the grid cells of the grid map. It only avoids neighboring nodes that are obstacles during pathfinding. 

As a consequence, the generated paths are relatively close to obstacles, and in some cases, they may 

even pass through the narrow gaps between two adjacent obstacles. Therefore, when the D-star 

algorithm is deployed on a robot, this phenomenon may result in collisions between the robot and 

obstacles. 

In this section, starting from the cost function of the D-star algorithm, we consider the threat cost 

of obstacles. By incorporating threat coefficients into the estimated costs of each node, the addition 

of threat coefficients can reduce the likelihood of selecting nodes around obstacles. 

Taking the grid cell where the current robot position node is located as a reference, we establish 

threat regions for each known obstacle grid cell in the environment. Figure 3 shows an illustrative 

example of the threat region for obstacle 1o , where the black grid cell represents the obstacle 1o in 

the node. We assign threat coefficients to the nodes corresponding to the first-layer neighborhood 

around the obstacle 1o grid cell. Nodes farther away from the obstacle 1o grid cell have lower 

probabilities of collision. 
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Figure 3. Threat Zone Illustration 

To avoid potential collisions between the robot and obstacles while following the planned path, 

this section proposes an enhancement to the cost function of the D-star algorithm. An heuristic 

function is added, and a threat cost term is included in the  h n term. The modified cost estimation 

function of the improved D-star algorithm is as follows: 

     *f n h n g n                 (4) 

     *h n h n s n                 (5) 

In equations (4) and (5),  *g n represents the cost value from the goal point to the current node 

n after adding the threat cost term to each grid node.  s n represents the threat cost term of node 

n , which is numerically equal to the sum of threat costs induced by surrounding obstacles on the 

current node n .  g n represents the estimated value from the current node to the start node, which 

is the heuristic term, and    , ,n f n h n  is defined the same as in equation (1). The threat cost 

estimation function  s n is given by the following expression: 

 
    2 2

1 1

M M
i

i i

i i
n i n i

a
s n a s

x x y y 

 
   

         (6) 

Where,  is a scaling coefficient because the square root operation is removed for computational 

efficiency. Here, the scaling coefficient is used to appropriately reduce the algebraic value in the 

denominator.  ,i ix y represents the coordinates of the center of the i th obstacle. 

 ,n nx y represents the coordinates of the current path node n . ia represents the effective coefficient 

of the threat cost. If there are no obstacles in the multi-level predicted neighborhood of the current 

path node, ia is set to 0; otherwise, it is set to 1.Considering that the path node expansion in the 

MLP D-star algorithm is in a multi-level structure, the Manhattan distance and diagonal distance are 

greatly influenced by a single dimension. If there is a large difference in one dimension, the 

heuristic function value will become large, neglecting the influence of other dimensions. Therefore, 

the Euclidean distance is used as the heuristic function, and a weighted coefficient  greater than 1 
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is introduced to increase the proportion of the cost from the current node to the goal point in the 

total cost. This helps increase the search depth and prevent the algorithm from getting stuck in local 

optima. The expression for the heuristic function is as follows: 

     
2 2

n start n starth n x x y y          (7) 

Where,  represents the weighting coefficient.  ,start startx y represents the coordinates of the s

tarting point in the grid map.  ,n nx y represents the coordinates of the current node being e

xpanded, denoted as node n , in the grid map. 

3.3. Implementation of the MLP D-star Algorithm 

We assume that the starting node for path planning is s  and the goal node is g . We define the 

OPEN list and CLOSE list to store the nodes to be expanded and the nodes that have been 

expanded, respectively. We also define the WARN_LIST to store the non-expandable nodes in the 

multi-level prediction structure. The algorithm execution process differs from the original D-star 

algorithm in Step 2. The complete process is as follows: 

(1) Create two lists, OPEN list and CLOSE list, and add the goal node to the OPEN list. 

(2) Check if the OPEN list is empty. If there are no nodes in the OPEN list, the algorithm 

terminates, and path planning fails. Otherwise, check if the node with the minimum cost estimate in 

the OPEN list is the starting node. If true, path planning is successful, and proceed to Step 3. If false, 

add this node to the CLOSE list and check if there are obstacles in the first-level neighborhood of 

this node. If there are obstacle nodes, add the non-expandable nodes from the second-level 

neighborhood to the WARN_LIST . Add the nearby expandable nodes that are not in the OPEN  

and WARN_LIST lists to the OPEN list, and continue with this step. 

(3) Traverse back to the goal node according to the backtracking pointers. If changes in the 

environment affect the nodes along the path, perform local replanning by adding the previous node 

of the changed node to the OPEN list, and return to Step 2. Otherwise, proceed to Step 4. 

(4) Path planning is complete. 

4. Algorithm Simulation and Analysis 

To validate the feasibility and effectiveness of the proposed MLP D-star algorithm, this chapter 

conducts simulation experiments. Two environments are created: a conventional obstacle 

environment and an extreme obstacle environment, both with a size of 20x20. The starting point 

coordinates are set as  1,1 , and the goal point coordinates are set as  19,19 . The original D-star 

algorithm and the MLP D-star algorithm are compared as controls for studying dynamic path 

planning in local unknown environments. In this simulation, black grid cells represent static 

obstacles, yellow grid cells represent sudden obstacles. The magenta solid line represents the path 

planning result in the static environment, while the path represented by blue dots indicates the result 

after replanning due to the inclusion of sudden obstacles. 

4.1. Path Planning in Conventional Obstacle Environments 

The path planning result of the original D-star algorithm in the conventional obstacle 

environment is shown in Figure 4(a), while the path planning result of the MLP D-star algorithm is 

shown in Figure 4(b). 
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(a) D_star              (b) MLP D_star  

Figure 4. Path Planning in Conventional Environment 

By comparing Figure 4(a) and Figure 4(b), it can be observed that in a conventional environment, 

where obstacles are scattered and mostly large-sized, the path planning result of the original D-star 

algorithm contains many waypoints and closely follows the edges and corners of the obstacles, 

which may lead to collision incidents in practical applications. The improved MLP D-star algorithm 

consistently maintains a safe distance from the obstacle edges and corners, reducing the probability 

of collision. Moreover, compared to the result of the original D-star algorithm, it has fewer 

waypoints and reduces unnecessary turns. Table 1 presents a comparison of path replanning results 

between the original D-star algorithm and the MLP D-star algorithm in a conventional obstacle 

environment. 

Table 1. Comparison of D-star Path Planning Results 

Comparison Parameters Figure 4 (a) Figure 4(b) 

Number of Turns 14  4  

Path Length 31.3137  30.7279  

Time 0.3748 0.2792 

4.2. Path Planning in Extreme Obstacle Environments 

The path planning results of the original D-star algorithm in the extreme obstacle environment 

are shown in Figure 5(a), and the path planning results of the MLP D-star algorithm are shown in 

Figure 5(b). 

 
(a) D_star           (b) MLP D_star  

Figure 5. Path planning in extreme environments. 
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By comparing Figure 5(a) and Figure 5(b), we can observe the following: In the extreme 

environment, the obstacles are small. The path generated by the original D-star algorithm hugs the 

edges of the obstacles and even exhibits the phenomenon of crossing obstacles as shown in Figure 

5(a), which is not feasible in practical applications. The path generated by the MLP D-star 

algorithm, on the other hand, is significantly different from that of the original D-star algorithm. It 

consistently maintains a safe distance from the obstacles and avoids the phenomenon of crossing 

obstacles seen in the original D-star algorithm, resulting in a more practical and feasible path 

planning outcome. Table 2 presents a comparison of the path replanning results between the original 

D-star algorithm and the MLP D-star algorithm in extreme obstacle environments. 

Table 2. Comparison of MLP D-star Path Planning Results 

Comparison Parameters Figure 5 (a) Figure 5(b) 

Number of Turns 7  6  

Path Length 28.9706  29.5563 

Time 0.4501 0.3025 

By comparing Table 1 and Table 2, we can see that the path lengths generated by the MLP D-star 

algorithm are similar to those of the original D-star algorithm. However, the MLP D-star algorithm 

shows a reduction in the number of turning points in the path planning results for both obstacle 

environments, and there is also a noticeable decrease in runtime. Table 3 provides a comparative 

analysis of the performance between the MLP D-star algorithm and the original D-star algorithm. 

Table 3. Comparison of the Two Algorithms 

Comparison Parameters D_star  MLP D_star  

Number of Turns No Yes 

Real-time Replanning No Yes 

Considering obstacle 

threat cost 

No 
Yes 

the practicality of the 

planned path 

No 
Yes 

The simulation results demonstrate that the paths obtained by the MLP D-star algorithm are safer 

compared to the original D-star algorithm. Additionally, the algorithm exhibits higher 

computational efficiency. In practical applications, the MLP D-star algorithm proves to be more 

feasible and effective than the original D-star algorithm. 

5. Conclusion 

In this paper, based on the neighborhood concept and the original D-star algorithm, we propose a 

Threat-Cost-Based Multi-Level Predictive D-star algorithm (MLP D-star) for path planning of 

mobile robots in locally unknown environments. This approach improves the node expansion in the 

D-star algorithm by employing a multi-level predictive structure, thereby reducing excessive turns 

in the planned path. Additionally, we incorporate threat-cost and heuristic functions into the cost 

function of the D-star algorithm to prevent paths from crossing obstacles. Furthermore, we conduct 

comparative simulation experiments in both conventional and extreme environments to evaluate the 
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proposed algorithm. The results demonstrate that the MLP D-star algorithm can effectively handle 

path planning in locally unknown environments. Compared to the original D-star algorithm, the 

improved MLP D-star algorithm exhibits advantages in terms of real-time performance, practicality 

of path results, safety, and computational efficiency. 
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