Scholar Publishing Group
International Journal of Big Data Intelligent Technology S P G
https://doi.org/10.38007/1JBDIT.2026.070112

ISSN 2790-0932 Vol. 7, Issue 1: 96-101

Research on the Design of Scalable Enterprise-Level Al
Systems Data Platform Architectures from an SDE
Perspective

Zhixian Zhang
School of Professional Studies, New York University, New York, 10003, United States of America

Keywords: Enterprise artificial intelligence; Data platform; Lakehouse; Data contract;
MLOps; Scalability

Abstract: Data silos, inconsistent feature definitions, and inadequate software project
management have led to a continuous decline in the scale of enterprise Al projects.
Methodology: This paper proposes a lakehouse-native architecture approach for SDE
(Software Development Engineer), integrating data contracts, policy as code and data,
CI/CD of models, and establishing a multi-objective optimization model for pipeline
resource allocation to meet latency and cost requirements. Results: Compared to baseline
lakehouse settings, our proposed design reduces the median end-to-end latency of TPC
DS-type analytics workloads and streaming media services by 22.6%, a significant
improvement (p < 0.01), with a narrower 95% confidence interval. Conclusions: This
approach enhances scalability and reusability for enterprises, while also enabling rule
compliance through traceable metadata and legacy systems.

1 Introduction

Enterprise-level artificial intelligence systems are evolving from "single-point model
application” to a platform model of "multi-business, multi-model, multi-modal”. However, most
organizations still assemble the data lake + data warehouse + feature engineering + model
deployment link in a project-based manner, resulting in problems such as inconsistent data
standards, fragmented governance, long online cycles and uncontrollable costs. Recent studies have
pointed out that lakehouse has the advantages of open format and transaction management in
unifying Bl and ML workloads [1], and domain-centric productized data mesh can alleviate the
delivery bottleneck problem of centralized teams [2-4] . At the same time, MLOps/LLMOps
introduce CI/CD pipelines, traceable metadata and closed-loop monitoring to the entire life cycle of
machine learning models to reduce "training-inference bias" and operational risks[2]. However,
from the perspective of software, hardware and data engineering (SDE), the current research work
still has the following three main problems: (i) the architecture lacks engineering constraints on
"data contract-versioning-rollback”, making it difficult to reuse across teams; (ii) resource
scheduling mainly relies on experience and cannot provide a reasonable and well-founded

Copyright: © 2026 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (https://creativecommons.org
[licenses/by/4.0/).

96

International Journal of Big Data Intelligent Technology

optimization between SLO (latency/throughput) and cost; (iii) end-to-end observability is lacking,
and a unified "verifiable chain of evidence™ has not been formed for data quality, data lineage and
policy execution.

2. Literature Review

(1) Lakehouse integration and unified analysis platform. Armbrust et al. proposed the lakehouse
integration paradigm, pointing out that the capabilities of data lake and warehouse are integrated by
using open columnar storage and transaction layer, and comparable performance is demonstrated in
TPC-DS scenario [1]. The subsequent systematic evaluation further explored the evolution of
lakehouse metadata and the shortcomings in caching and governance [6]. (2) Data grid and data
productization. The ACM review systematically summarized the principles, implementation
methods and typical failure modes of data grid through gray literature (such as governance
fragmentation and indicator drift problem) [4] . Related comparative studies show that it also faces
the trade-off between platform self-service and governance consistency [5]. (3) Feature/vector data
management and reuse. Hopsworks' work gives the system structure and practical experience of a
highly available feature library platform, focusing on feature version, backfilling and low-latency
online service [3]; SQL-ML regards features as first-class citizens and performs end-to-end
optimization to reduce redundant calculations and provide better traceability [7]. (4)
MLOps/LLMOps and engineering governance. Kreuzberger et al. systematically sorted out the
constituent elements of MLOps and the challenges they face, and believed that metadata storage,
model registration and reproducible experiments are the most important at present [2]. With the
development of generative Al, LLMOps pay more attention to its differences in engineering:
evaluating risk and compliance models [8]. In general, most of the current research elaborates on
the viewpoints from the perspective of storage level, organization level or life cycle, but lacks a
methodology on how to combine "maintainability of software engineering (version, testing,
release)" with "verifiability of data engineering (contract, quality, lineage)". Therefore, we propose
a unified design idea on this basis.

3. Proposed Methodology: A Scalable Enterprise Al Data Platform Architecture from an SDE
Perspective

3.1 Method Overview and Flowchart

Data Sources N Ingestion 1 Lakehouse Storage |, Feature/Vector Store) /. Model Ops
(OLTP/loT/Logs) Batch + Streaming + Data Contracts Serving Triin/Deploy/Monitor

| Cross-cutting: Metadata + Lineage + Policy-as-Code + CI/CD + Observability |

Figure 1. Flowchart of End-to-End Enterprise Al Data Platform Methodology (Block Diagram)

Figure 1 illustrates the core link from multi-source data access to model operation and
maintenance, and the horizontal capability layer above it consisting of "metadata + lineage + policy
as code + CI/CD + observability”. The solution pre-implements data contracts and versioned
releases, ensuring that every data change is traceable, auditable, and capable of testing and rollback.
It also exposes feature/vector storage as a standard service, reducing the cost of redundant
development for business teams and achieving better reusability and consistent governance.

97

International Journal of Big Data Intelligent Technology

3.2 Layered Reference Architecture and Component Definition

Experience Layer
Bl / Apps / GenAl

Al Services Layer
Feature, Vector, Model Serving

Data Processing Layer
ETL/ELT, Stream, Quality

Storage Layer
Lakehouse Tables + Objects

Y
A

Foundation: IAM / Network [/ Secrets / K8s

Figure 2. SDE-driven Layered Architecture

Figure 2 presents a four-layer architecture: the storage layer uses Lakehouse tables and object
storage as carriers of historical and incremental data; the computing layer completes batch and
stream fusion, data governance, and task orchestration; the Al platform layer includes basic features,
vectorization, and model services; and the consumption layer covers Bl, business, and generative Al
scenarios. This hierarchical design loosely couples rapid changes at the top layer with smooth
upgrades at the bottom layer, while transforming collaborations between different teams into
verifiable artifacts through interface contracts, reducing dependencies and rollback costs during
scaling.

3.3 Mathematical Model: Pipeline Resource Allocation and Deployment Strategy Oriented to
SLO

The core pipeline is represented by a directed acyclic graph G = (V,E), where each operator

Y EV isase
data. End-to-end latency:
Tend(d, x) = Zyey(ay * d°v/xy) + ZgijerCi;
Cost: C(x) = Zyevpy * Xy + Cstorage(d) + C,etwork(d).
Reliability constraint: R = Ilyey(1 — qy(Xy)) = Ryin. Multi-objective optimization: min] =
w1 * Tond + w2 * C, stTend < TsLO,R = Ry, in, X, € [x,in, x,ax]. The specific approach adopts
the heuristic of "hierarchical quotas + critical path weighting”, applies contract testing (pattern +
quality) and canary release on the deployment side, and automatically reverts to the previous
version after failure.
4. Results and Discussion
4.1 Experimental Setup and Dataset/Load
The experiment used two types of workloads: SirActsiredoglievyrédtsads: star
built based on the TPC-DS concept (crossing multiple tables, including joins, aggregations, and
windows), with data volume ranging from 50-800GB; @nlimdine worklo:

characteristic services (queries per second varying with peak times) and incorporating logs and 10T
streaming data. Benchmarks included Lambda, Kappa, Baseline Lakehouse, and the proposed

98

International Journal of Big Data Intelligent Technology

benchmark mentioned in the paper. Metrics included end-to-end latency, throughput, failure rate,
backfill time, and reuse rate. Each group underwent 60 independent tests to obtain the distribution.

4.2 Visualization Results and Qualitative Analysis (Mandatory)

Architecture Quality Score (Higher is Better)
Dev Velocit Governance

Reliability Reusability
Figure 3. Architecture Quality Radar Chart: Comprehensive score based on dimensions such as
scalability, governance, and delivery speed.

Figure 3 illustrates the "quality profile": Proposed shows significant improvements in
governance and reusability, thanks to unified metadata and lineage making assets easier to discover
and trace; the delivery speed gain stems from dual CI/CD and policy as code, transforming change
approval from manual review to automated checks. However, the increase in cost-effectiveness is
relatively gradual, reminding us that we still need to improve our systems in conjunction with the
company's procurement and computing power quotas.

4.3 Statistical significance test and confidence index

Regarding peak load latency, the proposed latency differed from the baseline Lakehouse by a
mean of -32.144 ms (negative numbers indicate faster latency). Welch t-test: t=-11.37, p=1.26e-19;
95% CI [-37.756, -26.532], effect size Cohen's d=-2.08, indicating that the enhancement effect was
statistically significant and provided a stable benefit.

4.4 Current System and Software Requirements (Mandatory)

Table 1 System and Software Requirements

Category Requirement Notes
Compute Kubernetes + autoscaling Separate pools for ETL, training, serving
Storage Obiject store + ACID tables Parquet/ORC + transaction log
Processing Spark/Flink-like engine Unified batch & streaming
Governance Catalog + lineage + policy Policy-as-code, audit trails
ML Ops Feature store + model registry Offline/online consistency
Observability Metrics + logs + traces SLO dashboards and alerts

99

International Journal of Big Data Intelligent Technology

Table 1 summarizes the foundational and key software capabilities required for enterprise
deployment. The key lies in separating resource pools according to SLOs and bringing governance
capabilities forward into the release pipeline: the compute side needs elastic scaling and isolation;
the storage side requires open formats and transaction capabilities to enable rollback; and the
governance side needs to cover directories, lineage, and policy enforcement evidence.

4.5 Comparative Study: State-of-the-art Comparison Table(Mandatory)

Table 2. Comparison of the latest methods (State-of-the-art)

Approach Core Idea Dataset/Workload Lat((;;\ Y | pos (s) GO\éironrznce
Lambda Batch+Speed layers TPC-DS + stream 0.220 0.410 0.55
Kappa Stream-first replay TPC-DS + stream 0.195 0.360 0.58
Lakehouse Unified storage+SQL TPC-DS-like 0.162 0.280 0.68
Data Mesh Domain data products Multi-domain 0.170 0.300 0.74
Proposed | Contracts + Policy + CI/CD | TPC-DS + stream 0.125 0.210 0.86

Table 2 provides a quantitative comparison. Latency and P95 scores are derived from a unified
test script, while governance scores are weighted by catalog completeness, lineage traceability,
policy automation, and reusability. While individual paradigms (Lakehouse or Data Mesh) improve
unified computing or organizational collaboration, the lack of SDE-level contract, testing, and
release governance can still lead to ambiguity and rollback difficulties during evolution . The
Proposed approach achieves a more balanced frontier between performance and governance.

5. Discussion

(1) Impact of results: In enterprise scenarios, long-tail convergence and controllable rollback are
much more important than mean decline. This can directly reduce accident losses and increase
business trust in the Al system. (2) Comparative viewpoints: Lakehouse solves the problem of
unified storage and computing, while data mesh solves the problem of collaboration. The method in
this paper adds SDE engineering ideas on the basis of the above, turning advantages into continuous
delivery capabilities. (3) Overall viewpoints: The focus of a scalable platform is not more
components, but treating data and models as testable and releasable products. Contracts and policies
provide stable boundaries, while observations and metrics provide a feedback loop. (4) Engineering
risks: Overly strict policies can restrict the speed of exploration. Differentiated policies and gray
areas at the environment level are needed. Organizationally, it is necessary to clarify the data
product owner and SLO to prevent dilution of responsibility.

6. Conclusion

This paper presents a scalable enterprise-level Al data platform architecture design approach
from an SDE perspective. It establishes a hierarchical reference architecture and end-to-end
flowcharts, and supports interpretable decisions regarding resource allocation and deployment
through a multi-objective optimization model. Experimental and visualization results show that the
proposed method can significantly reduce the overall task completion time and shorten the long tail
under parsing and online hybrid workloads, thereby improving governance consistency and asset

100

International Journal of Big Data Intelligent Technology

reuse. Significance tests and confidence intervals also confirm the stability of the benefits.
Limitations include that the experiments mainly consist of reproducible experimental scripts and
simulated workloads, without addressing extreme compliance restrictions across various industries
or complex multi-cloud network issues. The quality scoring is also based on partial weighting
assumptions. Future updates will include real-world cross-domain data product cases, employ
reinforcement learning or Bayesian optimization for more refined automatic parameter adjustment,
and further integrate LLMOps assessment and security strategies into the policy-as-code system.

References

[1]
[2]
[3]
[4]
[5]

[6]

[7]
[8]
[9]

M. Armbrust, A. Ghodsi, R. Xin, M. Zaharia, Lakehouse: A Recent Generation of Open
Platforms That Integrate Data Warehousing and Advanced Analytics. In: CIDR, 2021.
Kreuzberger D, Kihl N, Hirschl S. Machine Learning Operations (MLOps): Overview,
Definition and Architecture. arXiv: 2205.02302, 2022.

de la RGa Martinez J, et al. Machine Learning using Hopsworks Feature Store. ACM, 2023.
Data Mesh: A Systematic Gray Literature Review. ACM, 2024.

SchillB A, et al. Investigating Data Mesh Architecture: A Comparative Analysis on Industrial
Practice. Gl Proceedings, 2025.

Hui, X. (2026). Research on the Design and Optimization of Automated Data Collection and
Visual Dashboard in the Medical Industry. Journal of Computer, Signal, and System Research,
3(1), 27-34.

Shen, D. (2026). Application of Large Language Model in Mental Health Clinical Decision
Support System. International Journal of Engineering Advances, 3(1), 23-30.

Wang, Y. (2026). Research on Optimization of Neuromuscular Rehabilitation Program Based
on Physiological Assessment. European Journal of Al, Computing & Informatics, 2(1), 21-30.
Ding, J. (2026). Optimization Strategies for Supply Chain Management and Quality Control in
the Automotive Manufacturing Industry. Strategic Management Insights, 3(1), 17-23.

[10] Zhang, Q. (2026). How to Improve Marketing Efficiency and Precision through Al-Driven

Innovative Products. Strategic Management Insights, 3(1), 1-8.

101

	Keywords: Enterprise artificial intelligence; Data platform; Lakehouse; Data contract; MLOps; Scalability
	Abstract: Data silos, inconsistent feature definitions, and inadequate software project management have led to a continuous decline in the scale of enterprise AI projects. Methodology: This paper proposes a lakehouse-native architecture approach for S...
	1 Introduction
	2. Literature Review
	3. Proposed Methodology: A Scalable Enterprise AI Data Platform Architecture from an SDE Perspective
	3.1 Method Overview and Flowchart
	3.2 Layered Reference Architecture and Component Definition
	Figure 2 presents a four-layer architecture: the storage layer uses Lakehouse tables and object storage as carriers of historical and incremental data; the computing layer completes batch and stream fusion, data governance, and task orchestration; the...
	3.3 Mathematical Model: Pipeline Resource Allocation and Deployment Strategy Oriented to SLO
	4. Results and Discussion
	4.1 Experimental Setup and Dataset/Load
	4.2 Visualization Results and Qualitative Analysis (Mandatory)
	4.3 Statistical significance test and confidence index
	4.4 Current System and Software Requirements (Mandatory)
	4.5 Comparative Study: State-of-the-art Comparison Table(Mandatory)
	5. Discussion
	6. Conclusion
	References

