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Abstract: Data silos, inconsistent feature definitions, and inadequate software project 
management have led to a continuous decline in the scale of enterprise AI projects. 
Methodology: This paper proposes a lakehouse-native architecture approach for SDE 
(Software Development Engineer), integrating data contracts, policy as code and data, 
CI/CD of models, and establishing a multi-objective optimization model for pipeline 
resource allocation to meet latency and cost requirements. Results: Compared to baseline 
lakehouse settings, our proposed design reduces the median end-to-end latency of TPC 
DS-type analytics workloads and streaming media services by 22.6%, a significant 
improvement (p < 0.01), with a narrower 95% confidence interval. Conclusions: This 
approach enhances scalability and reusability for enterprises, while also enabling rule 
compliance through traceable metadata and legacy systems. 

1 Introduction 

Enterprise-level artificial intelligence systems are evolving from "single-point model 
application" to a platform model of "multi-business, multi-model, multi-modal". However, most 
organizations still assemble the data lake + data warehouse + feature engineering + model 
deployment link in a project-based manner, resulting in problems such as inconsistent data 
standards, fragmented governance, long online cycles and uncontrollable costs. Recent studies have 
pointed out that lakehouse has the advantages of open format and transaction management in 
unifying BI and ML workloads [1], and domain-centric productized data mesh can alleviate the 
delivery bottleneck problem of centralized teams [2-4] . At the same time, MLOps/LLMOps 
introduce CI/CD pipelines, traceable metadata and closed-loop monitoring to the entire life cycle of 
machine learning models to reduce "training-inference bias" and operational risks[2]. However, 
from the perspective of software, hardware and data engineering (SDE), the current research work 
still has the following three main problems: (i) the architecture lacks engineering constraints on 
"data contract-versioning-rollback", making it difficult to reuse across teams; (ii) resource 
scheduling mainly relies on experience and cannot provide a reasonable and well-founded 
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optimization between SLO (latency/throughput) and cost; (iii) end-to-end observability is lacking, 
and a unified "verifiable chain of evidence" has not been formed for data quality, data lineage and 
policy execution. 

2. Literature Review 

(1) Lakehouse integration and unified analysis platform. Armbrust et al. proposed the lakehouse 
integration paradigm, pointing out that the capabilities of data lake and warehouse are integrated by 
using open columnar storage and transaction layer, and comparable performance is demonstrated in 
TPC-DS scenario [1]. The subsequent systematic evaluation further explored the evolution of 
lakehouse metadata and the shortcomings in caching and governance [6]. (2) Data grid and data 
productization. The ACM review systematically summarized the principles, implementation 
methods and typical failure modes of data grid through gray literature (such as governance 
fragmentation and indicator drift problem) [4] . Related comparative studies show that it also faces 
the trade-off between platform self-service and governance consistency [5]. (3) Feature/vector data 
management and reuse. Hopsworks' work gives the system structure and practical experience of a 
highly available feature library platform, focusing on feature version, backfilling and low-latency 
online service [3]; SQL-ML regards features as first-class citizens and performs end-to-end 
optimization to reduce redundant calculations and provide better traceability [7]. (4) 
MLOps/LLMOps and engineering governance. Kreuzberger et al. systematically sorted out the 
constituent elements of MLOps and the challenges they face, and believed that metadata storage, 
model registration and reproducible experiments are the most important at present [2]. With the 
development of generative AI, LLMOps pay more attention to its differences in engineering: 
evaluating risk and compliance models [8]. In general, most of the current research elaborates on 
the viewpoints from the perspective of storage level, organization level or life cycle, but lacks a 
methodology on how to combine "maintainability of software engineering (version, testing, 
release)" with "verifiability of data engineering (contract, quality, lineage)". Therefore, we propose 
a unified design idea on this basis. 

3. Proposed Methodology: A Scalable Enterprise AI Data Platform Architecture from an SDE 
Perspective 

3.1 Method Overview and Flowchart 

Figure 1. Flowchart of End-to-End Enterprise AI Data Platform Methodology (Block Diagram) 

Figure 1 illustrates the core link from multi-source data access to model operation and 
maintenance, and the horizontal capability layer above it consisting of "metadata + lineage + policy 
as code + CI/CD + observability". The solution pre-implements data contracts and versioned 
releases, ensuring that every data change is traceable, auditable, and capable of testing and rollback. 
It also exposes feature/vector storage as a standard service, reducing the cost of redundant 
development for business teams and achieving better reusability and consistent governance. 
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3.2 Layered Reference Architecture and Component Definition 

 

Figure 2. SDE-driven Layered Architecture 

Figure 2 presents a four-layer architecture: the storage layer uses Lakehouse tables and object 
storage as carriers of historical and incremental data; the computing layer completes batch and 
stream fusion, data governance, and task orchestration; the AI platform layer includes basic features, 
vectorization, and model services; and the consumption layer covers BI, business, and generative AI 
scenarios. This hierarchical design loosely couples rapid changes at the top layer with smooth 
upgrades at the bottom layer, while transforming collaborations between different teams into 
verifiable artifacts through interface contracts, reducing dependencies and rollback costs during 
scaling. 

3.3 Mathematical Model: Pipeline Resource Allocation and Deployment Strategy Oriented to 
SLO 

The core pipeline is represented by a directed acyclic graph G = (V, E), where each operator 
v ∈V is a se               
data. End-to-end latency: 

 Tend(d, x) = Σv∈V(av ∗ dbv/xv) + Σ(i,j)∈Ecij;  
Cost: C(x) = Σv∈Vpv ∗ xv + Cstorage(d) + Cnetwork(d).  
Reliability constraint: R = Πv∈V(1 − qv(xv)) ≥ Rmin . Multi-objective optimization: minJ =

w1 ∗ Tend + w2 ∗ C, stTend ≤ TSLO, R ≥ Rmin, xv ∈ [xmin, xmax]. The specific approach adopts 
the heuristic of "hierarchical quotas + critical path weighting", applies contract testing (pattern + 
quality) and canary release on the deployment side, and automatically reverts to the previous 
version after failure. 

4. Results and Discussion 

4.1 Experimental Setup and Dataset/Load 

The experiment used two types of workloads: ① Analytical workloads: star-structured query sets 
built based on the TPC-DS concept (crossing multiple tables, including joins, aggregations, and 
windows), with data volume ranging from 50-800GB; ② Online workloa   online 
characteristic services (queries per second varying with peak times) and incorporating logs and IoT 
streaming data. Benchmarks included Lambda, Kappa, Baseline Lakehouse, and the proposed 
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benchmark mentioned in the paper. Metrics included end-to-end latency, throughput, failure rate, 
backfill time, and reuse rate. Each group underwent 60 independent tests to obtain the distribution. 

4.2 Visualization Results and Qualitative Analysis (Mandatory ) 

 

Figure 3. Architecture Quality Radar Chart: Comprehensive score based on dimensions such as 
scalability, governance, and delivery speed. 

Figure 3 illustrates the "quality profile": Proposed shows significant improvements in 
governance and reusability, thanks to unified metadata and lineage making assets easier to discover 
and trace; the delivery speed gain stems from dual CI/CD and policy as code, transforming change 
approval from manual review to automated checks. However, the increase in cost-effectiveness is 
relatively gradual, reminding us that we still need to improve our systems in conjunction with the 
company's procurement and computing power quotas. 

4.3 Statistical significance test and confidence index 

Regarding peak load latency, the proposed latency differed from the baseline Lakehouse by a 
mean of -32.144 ms (negative numbers indicate faster latency). Welch t-test: t=-11.37, p=1.26e-19; 
95% CI [-37.756, -26.532], effect size Cohen's d=-2.08, indicating that the enhancement effect was 
statistically significant and provided a stable benefit. 

4.4 Current System and Software Requirements (Mandatory ) 

Table 1 System and Software Requirements 

Category Requirement Notes 

Compute Kubernetes + autoscaling Separate pools for ETL, training, serving 

Storage Object store + ACID tables Parquet/ORC + transaction log 

Processing Spark/Flink-like engine Unified batch & streaming 

Governance Catalog + lineage + policy Policy-as-code, audit trails 

ML Ops Feature store + model registry Offline/online consistency 

Observability Metrics + logs + traces SLO dashboards and alerts 
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Table 1 summarizes the foundational and key software capabilities required for enterprise 
deployment. The key lies in separating resource pools according to SLOs and bringing governance 
capabilities forward into the release pipeline: the compute side needs elastic scaling and isolation; 
the storage side requires open formats and transaction capabilities to enable rollback; and the 
governance side needs to cover directories, lineage, and policy enforcement evidence. 

4.5 Comparative Study: State-of-the-art Comparison Table(Mandatory) 

 Table 2. Comparison of the latest methods (State-of-the-art) 

Approach Core Idea Dataset/Workload Latency 
(s) P95 (s) Governance 

Score 

Lambda Batch+Speed layers TPC-DS + stream 0.220 0.410 0.55 

Kappa Stream-first replay TPC-DS + stream 0.195 0.360 0.58 

Lakehouse Unified storage+SQL TPC-DS-like 0.162 0.280 0.68 

Data Mesh Domain data products Multi-domain 0.170 0.300 0.74 

Proposed Contracts + Policy + CI/CD TPC-DS + stream 0.125 0.210 0.86 
 
Table 2 provides a quantitative comparison. Latency and P95 scores are derived from a unified 

test script, while governance scores are weighted by catalog completeness, lineage traceability, 
policy automation, and reusability. While individual paradigms (Lakehouse or Data Mesh) improve 
unified computing or organizational collaboration, the lack of SDE-level contract, testing, and 
release governance can still lead to ambiguity and rollback difficulties during evolution . The 
Proposed approach achieves a more balanced frontier between performance and governance. 

5. Discussion 

(1) Impact of results: In enterprise scenarios, long-tail convergence and controllable rollback are 
much more important than mean decline. This can directly reduce accident losses and increase 
business trust in the AI system. (2) Comparative viewpoints: Lakehouse solves the problem of 
unified storage and computing, while data mesh solves the problem of collaboration. The method in 
this paper adds SDE engineering ideas on the basis of the above, turning advantages into continuous 
delivery capabilities. (3) Overall viewpoints: The focus of a scalable platform is not more 
components, but treating data and models as testable and releasable products. Contracts and policies 
provide stable boundaries, while observations and metrics provide a feedback loop. (4) Engineering 
risks: Overly strict policies can restrict the speed of exploration. Differentiated policies and gray 
areas at the environment level are needed. Organizationally, it is necessary to clarify the data 
product owner and SLO to prevent dilution of responsibility. 

6. Conclusion 

This paper presents a scalable enterprise-level AI data platform architecture design approach 
from an SDE perspective. It establishes a hierarchical reference architecture and end-to-end 
flowcharts, and supports interpretable decisions regarding resource allocation and deployment 
through a multi-objective optimization model. Experimental and visualization results show that the 
proposed method can significantly reduce the overall task completion time and shorten the long tail 
under parsing and online hybrid workloads, thereby improving governance consistency and asset 
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reuse. Significance tests and confidence intervals also confirm the stability of the benefits. 
Limitations include that the experiments mainly consist of reproducible experimental scripts and 
simulated workloads, without addressing extreme compliance restrictions across various industries 
or complex multi-cloud network issues. The quality scoring is also based on partial weighting 
assumptions. Future updates will include real-world cross-domain data product cases, employ 
reinforcement learning or Bayesian optimization for more refined automatic parameter adjustment, 
and further integrate LLMOps assessment and security strategies into the policy-as-code system. 
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