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Abstract: This study focuses on the challenges of end-to-end reliability modeling and 
optimization in service grids. In response to the shortcomings of traditional methods in 
adapting to heterogeneous link characteristics, data collection limitations, and dynamic 
environment adaptability, an innovative solution based on machine learning is proposed. 
The research background points out that latency and jitter, as key performance indicators, 
directly affect service quality, while traditional models have significant deficiencies in 
capturing nonlinear relationships, data collection costs, and dynamic optimization 
capabilities. The research method adopts machine learning techniques such as deep neural 
networks, random forests, and LSTM, combined with high-precision time synchronization 
(accuracy ≤ 300 nanoseconds) and large capacity data collection (single link data volume 
≥ 50GB, lasting for 3 months), to construct a flexible and adjustable real dataset; Propose 
a heterogeneous neural network latency model, which independently models a single link 
through multiple models and introduces a weight learning mechanism to intelligently 
integrate the results of each link to adapt to heterogeneous characteristics; Introducing 
transfer learning to supplement target domain data, reducing annotation dependencies, and 
expanding jitter modeling application scenarios. Research has found that LSTM performs 
the best in modeling single link temporal sequences, but the entire path modeling requires 
heterogeneous neural networks to adapt to the differences in each link; When using transfer 
learning combined with feedforward neural networks and LSTM to model jitter, the R ² 
index exceeded 0.99, verifying the efficient utilization of data and the model's 
generalization ability; Heterogeneous neural network has better loss and fitting degree than 
single model in path delay prediction, which can effectively capture complex network 
behavior characteristics. Research contributions include the construction of high-quality 
datasets, new sample approximation methods based on path and link relationships, 
innovation in heterogeneous neural network models, and the application of transfer 
learning in supplementing lost traffic data. In the future, we will explore potential impact 
relationships between multiple links, consistency of transfer sample relationships, and 
better jitter modeling models to continuously optimize network performance and 
management support. 
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1. Introduction 

The research on end-to-end reliability modeling and optimization of service grids focuses on 
deeply abstracting network features, behaviors, and performance, gaining a deep understanding of 
topology structure, and predicting development trends to address the challenges brought about by 
the expansion of network scale and the surge in service verification demand. Time delay and jitter, 
as key performance indicators, directly affect user experience and service quality - time delay 
reflects data transmission delay and determines service response speed; Jitter reflects transmission 
stability, and its abnormalities may cause problems such as data loss and service interruption. 
However, traditional modeling methods face multiple challenges: a single model is difficult to adapt 
to the heterogeneous characteristics of different links, resulting in insufficient capture of nonlinear 
relationships; Data collection is often limited by device rules, making it difficult to obtain a wide 
range of operating parameters, and large-scale traffic measurement is costly; Traditional 
optimization problems are mostly NP hard and lack self-learning ability, making it difficult to adapt 
to dynamic network environments; Empirical models have shortcomings in processing high-speed 
and large amounts of data, such as poor convergence and high misjudgment rates. The motivation 
for this study stems from solving the above problems: using machine learning techniques such as 
deep neural networks, random forests, and LSTM to construct a real network environment dataset, 
and enhancing model generalization ability through fine-grained, high-precision time 
synchronization and large capacity data (over 10000 data points under a single traffic value); 
Propose a delay model based on heterogeneous neural networks, which independently models a 
single link through multiple models and introduces a weight learning mechanism to intelligently 
integrate the results of each link to adapt to characteristic differences; Introducing transfer learning 
to supplement target domain data, reducing dependence on annotated data, and solving the problem 
of data scarcity. Clear objective: To construct a structurally flexible and adjustable real dataset to 
verify the accuracy and feasibility of modeling latency and jitter; Prove the superiority of 
heterogeneous neural network models in delay prediction through performance comparison; Expand 
the application scenarios of jitter modeling using transfer learning. Contributions include: proposing 
a heterogeneous neural network latency model that adapts to the heterogeneous characteristics of 
links, improving modeling accuracy; Efficiently utilizing data and reducing measurement costs 
through transfer learning; Building high-value datasets promotes the widespread application of 
machine learning in network feature modeling. 

2. Correlation theory 

2.1 Overview and Architecture Analysis of Software Defined Networking 

Software defined networks [1] were first proposed by a research team at Stanford University, 
aiming to address the rigidity and complexity issues caused by the close coupling of control and 
data forwarding functions in traditional networks. The core innovation lies in separating the control 
plane from the data forwarding plane, and implementing global dynamic management and 
programming control of the network through a centralized controller, thereby enhancing the 
flexibility, programmability, and intelligence level of the network. The SDN architecture mainly 
consists of three parts: the controller serves as the core component, communicates with network 
devices through open interfaces (such as OpenFlow), centrally issues flow table rules to guide 
packet forwarding paths, and supports customizing network behavior through applications or scripts; 
Data plane devices (such as switches and routers) are only responsible for performing forwarding, 
filtering, and processing operations, and operate according to controller instructions; The 
application module is built on top of the controller and implements specific network functions (such 



International Journal of Big Data Intelligent Technology 

89 

as traffic engineering, security policies, network virtualization, etc.) through programming 
interfaces. Compared to traditional networks, SDN achieves centralized management by separating 
control and forwarding, simplifying network configuration complexity and enhancing 
maintainability; Open interfaces and standardized protocols promote interoperability between 
devices and applications, providing a foundation for network innovation such as traffic optimization 
and dynamic adjustment of security policies. However, the centralized control feature also 
introduces security risks (such as susceptibility to packet injection attacks and potential bottleneck 
of controllers), and OpenFlow [2] protocol vulnerabilities, controller performance limitations, and 
architecture flaws (such as single point of failure risk) remain key challenges that need to be 
optimized. Overall, SDN has driven the development of network flexibility and intelligence through 
architectural innovation, but continuous improvement is needed in security, performance 
optimization, and protocol refinement to meet the needs of large-scale network scenarios. 

2.2 Machine Learning and Its Application in Network Feature Modeling 

Machine learning[3], as a core subfield of artificial intelligence, is committed to enabling 
computers to autonomously learn and optimize performance through data-driven approaches, 
achieving tasks such as prediction, classification, and clustering. Its learning paradigms include 
supervised learning (training models using known input-output pairs), unsupervised learning 
(mining potential structures under unlabeled data), semi supervised learning (mixing labeled and 
unlabeled data), transfer learning (cross domain knowledge transfer), deep learning (learning 
complex feature representations through multi-layer neural networks), and reinforcement learning 
(optimizing strategies through trial and error). Since the 1950s and 1960s, machine learning has 
been building intelligent systems by simulating human thinking processes. Through breakthroughs 
in neural networks, support vector machines, deep learning, and other fields, it has become a key 
technology in image recognition, natural language processing, medical diagnosis, and other fields 
due to data explosion and increased computing power. Transfer learning focuses on improving the 
performance of target tasks by utilizing knowledge from the source domain. By pre training models 
from the source task[4] (such as deep learning models), features or parameters are transferred to the 
target domain to solve the problem of data scarcity. Its process includes source task learning 
(acquiring general knowledge) and knowledge transfer (applying to target tasks), with methods 
covering model parameter transfer, feature matching, and adversarial adaptation, widely used in 
natural language understanding and computer vision (as shown in Figure 1). 

 

 
Figure 1 Transfer Learning Knowledge Transfer Flow Chart 
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LSTM (Long Short Term Memory Network), as a variant of RNN, is adept at handling long 
sequence time dependency problems. Its structure includes memory cells, input gates, output gates, 
and forget gates: forget gates 

 ft = σ(Wf · [ht − 1, xt] + bf) (1) 

Control the retention of historical information; The input gate it = σ(Wi · [ht − 1, xt] + bi)and 
the unit state update value C�t = tanh(Wc · [ht − 1, xt] + bC) jointly determine the writing of new 
information; The output gate ot = σ(Wo · [ht − 1, xt] + bo)controls the final output ht = ot ⊗
tanh(Ct) , where Ct = ft ⊗ Ct − 1 + it ⊗C�t  The use of gating mechanisms to solve gradient 
vanishing/exploding problems has been widely applied in natural language processing and speech 
recognition, but there are challenges in overfitting and training efficiency. 

CNN (Convolutional Neural Network)[5]processes grid structured data through convolutional 
layers, pooling layers, and fully connected layers. The convolutional layer utilizes learnable 
convolution kernels for local feature extraction, and the output feature map size formula isN =
(M − k)/s + 1is the input size, k is the convolution kernel size, and s is the stride), preserving edge 
information through padding. The pooling layer (such as max pooling) reduces the feature 
dimension, enhances translation invariance, and alleviates overfitting by using ajl = f(bjl + βji ·
down(ajl − 1, Ml)) . The fully connected layer integrates features to complete 
classification/regression tasks. CNN training relies on backpropagation and optimization algorithms 
(such as gradient descent), which are widely used in fields such as image recognition, video 
analysis, and traffic monitoring. This study focuses on using machine learning methods such as 
transfer learning, LSTM, and CNN to construct end-to-end feature (such as latency and jitter) 
models for networks. The performance of the models is verified through real datasets, promoting 
the development of network feature modeling and optimization. 

3. Research method 

3.1 Overview of Network Measurement and Feature Modeling Techniques 

Network measurement and network feature modeling are the core components of network data 
analysis. Measurement provides basic data support, while modeling achieves network behavior 
prediction and performance optimization through data abstraction. Network measurement needs to 
follow a code of conduct and provide input for applications such as traffic engineering and security 
analysis. The methods can be divided into three categories: active measurement obtains latency, 
connectivity, and other information by sending probe packets (such as ICMP Echo requests), but 
may introduce additional loads that affect measurement accuracy. In practical applications, host 
reachability needs to be detected first, and latency data needs to be collected by continuously 
sending data packets; Passive measurement analyzes traffic status by capturing packet headers 
without increasing network load. It is suitable for micro level statistical analysis of individual 
packet characteristics or macro level grouping of data streams according to aggregation rules. It is 
commonly used for jitter estimation (analyzing the timestamp interval of consecutive packets), but 
there are challenges in data processing in high-speed link scenarios; Other measurement methods 
are divided into single point and multi-point measurement based on the number of measurement 
points (multi-point can integrate cross routing information), and end-to-end measurement based on 
support level (only requiring edge hosts to participate, without router cooperation, inferring internal 
QoS performance based on packet delay and lost information). Based on router measurement and 
router collaborative measurement, end-to-end measurement research originated from multicast tree 
packet loss analysis and later expanded to unicast network performance research. Network feature 



International Journal of Big Data Intelligent Technology 

91 

modeling relies on high-quality data and requires the selection of appropriate measurement methods. 
This study is based on software defined network architecture, combined with machine learning 
models such as transfer learning (solving data scarcity problems through cross domain knowledge 
transfer), LSTM (processing long sequence time dependencies through gating mechanisms, suitable 
for time series prediction), and CNN (extracting grid data features through convolutional and 
pooling layers, and completing classification/regression tasks through fully connected layers) to 
construct end-to-end feature (such as latency and jitter) models. Subsequently, we will elaborate in 
detail on latency modeling based on heterogeneous neural networks and transfer learning driven 
jitter modeling methods to verify model performance and promote technological optimization 
development. 

3.2 Construction Method and Experimental Environment Design of Network Feature 

Dataset 

The modeling of network features relies on high-quality datasets. The dataset constructed in this 
paper follows the principles of granularity, large data volume, and precise time synchronization. 
Detailed measurements were taken on 20 links, with each link having raw data of over 50GB. The 
collection process took 3 months to complete, and after rigorous cleaning and preprocessing, it 
provided rich input samples for model training, helping the model adapt to diverse real-world 
environments. The experimental environment is built on a local area network, using two servers, 
three switches, and fiber optic connections. It is equipped with gigabit network ports and ensures 
time synchronization accuracy within 300ns. Accurate time synchronization is achieved through a 
timing server. The data transmission adopts both TCP and UDP protocols to comprehensively 
evaluate network performance, compare protocol differences, and meet different application 
requirements (such as TCP for reliable transmission scenarios and UDP for scenarios with high 
real-time requirements). The data collection process includes: verifying connectivity using the ping 
command, sending probe streams at a specified rate through a custom packet sending program, 
capturing packets using Wireshark, and finally processing and analyzing data using Python. In the 
experiment, 9 randomly selected link data were used to verify the effectiveness of the method. This 
dataset makes up for the shortcomings of small scale, high cost, and limited privacy of publicly 
available datasets in the field of networks, providing important support for network feature 
modeling research. 

3.3 Construction process and processing method of network feature dataset 

The construction of the network feature dataset is based on the principles of granularity, large 
data volume, and precise time synchronization, and diversified network data is collected through a 
local area network experimental environment. The experimental environment is equipped with 
gigabit Ethernet servers, switches, and fiber optic connections, with time synchronization accuracy 
controlled within 300ns. TCP and UDP dual protocol transmission is used to comprehensively 
evaluate network performance differences. The data collection process includes: verifying 
connectivity using the ping command, sending a probe stream at a specified rate through a custom 
packet sending program (TCP probe stream sends 500MB of data in a loop, UDP probe stream 
randomly fills 256B packets), capturing packets using Wireshark [6], and finally processing the data 
through Python. The data generation steps are divided into four categories: the raw latency data is 
converted from pcapng to csv to calculate inaccurate latency, and the link latency is corrected by 
combining the sending/receiving ping packet latency file; The first type of sample is based on the 
statistical average, maximum, and 95th percentile values of the original delay file; The second type 
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of sample selects traffic values through parameter n and randomly samples to generate target link 
training samples; The third type of sample generates source link training samples based on the 
formula for continuous traffic values; The fourth type of sample generates path delay samples by 
combining random traffic values from multiple links, ultimately forming a high-quality dataset with 
20 links and a single link sample size of over 50GB. It takes 3 months to complete the collection 
and preprocessing, providing reliable data support for end-to-end delay and transmission jitter 
modeling in the network. 

4. Results and discussion 

4.1 Network latency modeling method and experimental analysis based on heterogeneous 
neural networks 

In end-to-end feature modeling of networks, latency is a key factor that requires special attention 
to the measurement and modeling of path and link latency. Traditional path delay measurement 
requires a large amount of test data flow, which can easily lead to high network load or even 
failures; Software defined networks dynamically obtain link latency through controllers, which can 
effectively reduce testing costs and achieve global optimization. A link refers to the physical/logical 
connection between nodes, while a path is composed of multiple links forming a data transmission 
path. Its delay modeling needs to be combined with the characteristics of link state changes. This 
article proposes a delay modeling method based on heterogeneous neural networks: establishing 
traffic segmentation mapping relationships through data preprocessing, supplementing uncollected 
samples through sample migration, constructing heterogeneous models including LSTM, CNN, and 
feedforward neural networks - each link is independently modeled to adapt to characteristic 
differences, introducing a weight learning mechanism to intelligently fuse the delay results of each 
link, and ultimately deriving overall performance through the sum of path delays. The model adopts 
MSE loss function [7]and Adam optimizer, with 300 iterations and a learning rate of 0.001. The 
number of traffic segments is set to 1000 to ensure experimental generality. The system model 
includes a controller (monitoring link delay), a learner (training link model and processing sample 
transfer), and a path delay detector (obtaining running network path data). Through traffic delay, it 
constructs data associations between the source domain (experimental network), target domain 
(running network), and joint domain (path delay). Experimental verification shows that this method 
improves the accuracy and reliability of path delay modeling while reducing measurement costs, 
providing effective support for network performance optimization. 

4.2 Model experiment 

This chapter focuses on solving the problems of high cost of obtaining path delay data and high 
measurement overhead in network feature modeling. The effectiveness of the method is verified by 
comparing the performance of heterogeneous neural networks and single neural network models. 
The experiment uses transfer learning to supplement sample data and constructs a heterogeneous 
model including LSTM, CNN, and feedforward neural network. Each link is independently 
modeled to adapt to characteristic differences, and a weight learning mechanism is introduced to 
fuse the delay results of each link.In the single model test (as shown in Table 1), the LSTM model 
performs best under random links and background traffic - its average MSE loss is significantly 
lower than that of feedforward neural networks and CNN, especially the ultra low loss of 
0.0000008899 under Link9 (100 background traffic), which benefits from LSTM's ability to capture 
long-term dependence on time series data. In contrast, the overall average loss of feedforward 
neural networks is 0.0015489399, and CNN is 0.0016264037, both of which have outlier fitting 
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bias, reflecting their insufficient adaptability to complex nonlinear time-delay data. 

Table 1 Comparison of Performance Test Results of Neural Network Models 

Neural Network Model test link Background traffic MSE average loss 

Feedforward neural 
network 

Link2 20 0.0003424944 
Link4 40 0.0013989635 
Link5 40 0.0028523205 
Link9 100 0.0002713662 

Convolutional Neural 
Network 

Link2 20 0.0003714390 
Link4 40 0.0014346647 
Link5 40 0.0029531518 
Link9 100 0.0002942836 

Long Short Term Memory 
Network 

Link2 20 0.0000470408 
Link4 40 0.0001984667 
Link5 40 0.0001483116 
Link9 100 0.0000008899 

 
The heterogeneous neural network model[8]integrates the contributions of each link through a 

weight learning mechanism. The weight of Link2 is as high as 0.71118353, corresponding to its low 
loss value (0.0001449720), while the weight of high loss links (such as Link8) is significantly 
reduced. The total loss of the final model is 0.0012522057, which is better than the loss value of 
any single model, and the overall fitting trend is better, which verifies the robustness and 
generalization ability of heterogeneous models in complex network environment. The experimental 
results show that the model effectively improves the accuracy and stability of path delay modeling 
by integrating the advantages of multiple models, providing reliable technical support for network 
performance optimization. 

4.3 Effect analysis 

Network transmission jitter refers to the instability of packet arrival time at the receiver, caused 
by factors such as network congestion, routing failures, and changes in link quality, which 
significantly affects the performance of real-time applications such as voice calls and video 
conferences. Traditional modeling methods rely on large amounts of real-time data, but are limited 
by the availability of data in specific environments and cross environment adaptability. Transfer 
learning improves the generalization ability of the target domain by utilizing source domain 
knowledge, effectively solving the problem of insufficient samples. Its core lies in combining 
existing jitter data (source domain) with target network data to construct a traffic delay mapping 
relationship, thereby enhancing the accuracy and stability of the model in the target environment. In 
software defined networks, controllers can assist in jitter monitoring, but face dual challenges of 
sample scarcity and resource consumption: a small number of samples are difficult to support a 
complete link feature model, and frequent queries lead to excessive controller load. Transfer 
learning generates source/target link traffic delay samples through traffic segmentation mechanism 
(evenly dividing link traffic into n segments according to bandwidth, with each segment 
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corresponding to a reference traffic value), and introduces data saturation index to evaluate dataset 
quality (based on the number of unmeasured traffic segments and sample distribution density). The 
experiment used a feedforward neural network and a long short-term memory network (LSTM) to 
construct a model: the feedforward network processed jitter data through a four layer fully 
connected structure, and used MMSE loss function[9] and L1 regularization; LSTM utilizes 
temporal dependency characteristics to capture long-term fluctuation patterns, with a hidden layer 
set to 64 and batch_2 set to 1 to avoid inter sample interference. The experimental results show that 
the LSTM model significantly outperforms the feedforward network in MMSE (as low as 
0.0000094759) and R ² (as high as 0.9999945617) metrics, and the fitted curve highly matches real 
jitter data, verifying its advantages in temporal data processing. However, LSTM is slightly inferior 
to feedforward networks in handling outliers (abnormal events), which may be sensitive to outliers 
due to overfitting simple one-dimensional data. The data saturation index and segmentation 
deviation rate validate the key impact of dataset quality on model performance, and the optimal 
dataset performs well in average jitter, variance, and distribution uniformity.In summary, transfer 
learning effectively improves the generalization ability of network transmission jitter modeling by 
supplementing sample data. Combined with the temporal characteristics of LSTM and rigorous data 
quality evaluation, it provides reliable technical support for jitter prediction in complex network 
environments, while revealing the balance between outlier processing and model selection 
requirements. 

5. Conclusion 

Software defined networking provides a new solution for managing commonly used resources in 
society, such as water and electricity. By monitoring critical equipment, faults can be detected and 
addressed in a timely manner, reducing the likelihood of failure. With the increasingly complex 
network environment, traditional end-to-end feature modeling methods can no longer meet the 
requirements of network service quality, and the development of machine learning has brought new 
possibilities for this. Network features [10], such as latency and transmission jitter, are crucial for 
measuring network quality and operational status. In response to the difficulties faced by end-to-end 
feature modeling and the challenge of insufficient data samples, a machine learning based end-to-
end feature modeling method has been proposed. Detailed experimental research has been 
conducted on latency and transmission jitter to optimize modern network performance and provide 
basic support for network management and optimization. Prior to the experiment, an experimental 
environment based on running software defined networks and an independent experimental network 
were established. Data was obtained from both the running and experimental networks, and the 
quality of the dataset was evaluated using data saturation indicators. In a real environment, data is 
collected using switches, servers, network timing servers, and data sending/receiving programs. 
Wireshark is used to capture packets and Python is used to process the data. An experimental model 
is built in PyTorch environment to obtain latency and network characteristic data. The experiment 
uses transfer learning to process the dataset and models different neural networks. In the first 
experiment, modeling a single link using long short-term memory networks, feedforward neural 
networks, and convolutional neural networks showed that long short-term memory networks 
performed better in processing time-series data; However, when applied to modeling each link of 
the entire path, the results are opposite to those of a single link, which verifies the necessity of the 
delay model based on heterogeneous neural networks. Heterogeneous neural network models each 
link of the path separately, which can better simulate the complex state of the real network and learn 
the characteristics of complex behavior. R ²>0.99 validates the excellent performance of the 
modeling method. Innovation focus: 1) Building high-quality datasets (self built real network 
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collection, time synchronization accuracy ≤ 300ns, single link data volume exceeding 50GB, 
lasting for 3 months); 2) Propose a new sample approximation method driven by path link 
relationships (integrating all link samples under a specific path, combining transfer learning to 
generate diverse path samples, and approximating the true distribution); 3) Adopting link level 
heterogeneous neural network modeling to adapt to complex network behaviors; 4) A modeling 
scheme for feature missing scenarios under continuous background traffic is proposed, which uses 
transfer learning to complete traffic data (constructing a dataset based on the relationship between 
latency and transmission jitter, and modeling transmission jitter using LSTM). In the future, we will 
explore the undiscovered impact relationships of multiple links in path modeling to improve 
performance, study the potential consistency of the relationship between transfer samples and 
source samples, and try different neural network models to find better representations of network 
transmission jitter. 
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