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Abstract: Diesel engines are widely used for their good power performance and economic 

performance, and the emission control technology of diesel engines has developed rapidly 

in recent years, not only for the health problems of everyone, but also for the sustainable 

development of a country. Amongst other things, NOX and particulate in-engine cleaning 

of diesel engines are a mutually constraining relationship and cannot well reduce the 

emissions of both at the same time. Therefore, this paper explores the reduction of diesel 

particulate emissions based on artificial intelligence research on oxidation catalytic 

converters. In order to reduce particulate emissions, three post-treatment methods are 

chosen in this paper: particulate trap (DPF), oxidation catalyst (DOC) and particulate 

oxidation catalyst (POC). The three technologies are used to analyse the factors influencing 

PM emissions, reduce diesel particulate emissions and achieve the goal of diesel exhaust 

gas compliance. 

1. Introduction 

Diesel engines are widely used for their good power and economic performance. Diesel exhaust 

emissions are one of the major sources of environmental pollutants and strict emission regulations 

are being implemented worldwide to improve and protect the environment [1-2]. As emissions 

regulations become more stringent, diesel engines need to use a variety of aftertreatment devices to 

enable their exhaust emissions to meet regulatory requirements, including selective catalytic 

reduction systems, diesel particulate traps, diesel oxidation catalytic converters, etc. [3-4]. Among 

them, diesel particulate traps, as the most direct and effective means to reduce carbon soot 

emissions, will become an important component of the future diesel engine aftertreatment system 

[7]. 
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With the development of artificial intelligence technology, more and more researchers have 

conducted in-depth research on diesel particulate emissions. For example, experts such as Sergey 

Samokhin have studied the effect of EGR on engine emissions. EGR reduces CO emissions by 

decreasing the dissociation rate of carbon dioxide, and hot EGR can increase the intake air 

temperature to reduce NOX emissions, but it also affects the engine power [8]. John Shutty et al. 

studied the emission spectra during gas discharge through spectral diagnosis To investigate the 

mechanism of different discharge parameters and gas components on the uniform discharge of 

dielectric barrier, a new type of dielectric barrier discharge generator with large air gap coaxial 

cylindrical structure was designed and effectively matched with the driving power supply [9]. 

Through the study, it was found that using artificial intelligence to reduce diesel particulate 

emissions is a good research direction. 

In the context of energy saving and emission reduction, this paper conducts an in-depth study on 

diesel engine particulate emissions based on artificial intelligence. The first part is a basic overview 

of the physical model of the diesel engine and the particulate trap trap, which introduces the 

knowledge about diesel engines. The third part is the analysis of the impact of the reformer, 

including the analysis of the impact of POC on PM emissions and the analysis of the impact of NO 

conversion. 

2. Basic Overview 

2.1. Physical Model of Diesel Engine 

The internal structure of a diesel engine is complex and requires various systems to work 

together during operation. 

(1) Engine module: the engine starts its operation in the relevant mode by entering the engine 

speed and calculating the engine torque [10]. 

(2) Air intake system: The air intake system consists of the compressor inlet, the upstream air 

duct and contains a simple model of the airbox. At the inlet and outlet of the airbox, conical orifice 

connections are used to simulate a smooth transition [11]. 

(3) Exhaust system: The exhaust manifold uses a heat transfer object to calculate the wall 

temperature. The orifice connecting the exhaust port to the flow pipe does not allow heat transfer 

between the walls of adjacent components [12]. 

2.2. Particle Trap Capture 

The working process of the DPE is as follows: firstly, the particles in the exhaust gas are trapped 

by the filter wall of the clean particle trap under low temperature conditions, when the filter wall is 

saturated, the particles are deposited on top of the wall to form a filter cake layer, then under a 

certain condition, the passive regeneration rate is accelerated and the deposited particles are 

oxidised by NO2, after several iterations, the unburned part of the particles is covered on the wall or 

above the coating to form an ash layer, when the particles are trapped again When trapped again, 

the vast majority of particles form a cake layer, and then the particle trap regenerates the cake 

[13-14]. Differences in the capture process of a particulate trap can also affect the regeneration 

process [15]. Particle trap capture is generally divided into two categories: without catalytic coating 

and with catalytic coating [16]. Particle traps without a catalytic coating are divided into two stages: 

the particles enter the filter wall and are trapped, called deep bed trapping; after the filter wall is 

saturated, the particles are deposited on the channel surface, called filter cake trapping [17-18]. 
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3. Factors Influencing Particulate Emissions 

3.1. Particle Size Distribution 

The particle size distribution of particle number concentration can be obtained from the 

relationship between the number of particles in the test results and the change in particle size. 

Similarly, the particle size distribution of the mass concentration of particles can be obtained by 

using the formulae shown in equations (1) and (2). 

  KRaR pii /lnexp1 
                    (1) 

  LRbR pii /lnexp2 
                  (2) 

In this case, ai is the particle number concentration at the ith particle size interval, bi is the 

particle mass concentration at the ith particle size interval, Rpi is the characteristic particle size at 

the ith particle size interval, K is the total particle number concentration, L is the total particle mass 

concentration, the geometric mean particle size at the particle number concentration is R1 and the 

geometric mean particle size at the particle mass concentration is R2. For analytical purposes, the 

particles are divided into several different modes according to their size The particles are divided 

into several different modes. Particles with a particle size of 5nm-50nm are called nucleated; 

particles with a particle size of 50nm-1000nm are called aggregated; particles with a particle size of 

less than 100nm are called ultrafine. 

3.2. Effect of Common Operating Conditions on Pollutant Conversion Rates 

Based on the common operating conditions of non-road diesel engines, the conversion rates of 

CO, HC and NO under common operating conditions were investigated at an exhaust oxygen 

concentration of 15%. The four common operating conditions for off-road diesel engines were as 

follows: Condition 1: engine 1500r/min, 50% load; Condition 2: engine 1500r/min, 75% load; 

Condition 3: engine 1800r/min, 50% load; Condition 4: engine 1800r/min, 75% load. The 

temperature at the DOC inlet for these five operating conditions was obtained from the established 

engine model and fluid simulation calculations for the emission after-treatment unit. The results are 

shown in Table 1. 

Table 1. Conversion rate of each pollutant at 15% exhaust oxygen concentration 

Condition 
Inlet temperature 

(℃) 

CO conversion 

rate (%) 

HC conversion 

rate (%) 

NO conversion 

rate (%) 

Condition 1 284 98.49 88.39 42.52 

Condition 2 377 98.44 89.87 26.53 

Condition 3 329 97.25 81.31 31.21 

Condition 4 402 97.27 83.65 23.14 

 

As can be seen from Table 1, under the common operating conditions, the CO conversion rate 

and HC conversion rate are good, while the NO conversion rate is slightly lower in working 

condition II and working condition IV. The NO conversion rate can be improved by increasing the 

oxygen concentration of the exhaust gas of Case 2 and Case 4 through secondary make-up gas. 

When the exhaust oxygen concentration is 20%, the CO, HC and NO conversion rate of working 

condition two and working condition four are shown in Table 2. The results show that when the 
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exhaust oxygen concentration rises, the NO conversion rate increases significantly, so the NO 

conversion rate can be improved through the secondary gas supply. 

Table 2. The conversion rate of each pollutant when the exhaust oxygen concentration is 20% 

Condition 
Inlet temperature 

(℃) 

CO conversion 

rate (%) 

HC conversion 

rate (%) 

NO conversion 

rate (%) 

Condition 2 377 98.45 90.07 30.58 

Condition 4 402 97.31 84.24 27.11 

 

3.3. Effect of Initial Soot Density in the DPF on Regenerative Energy Use 

Let the initial soot density in the DPF be 4.5g/L, 5.5g/L, 6.5g/L, 7.5g/L, 8.5g/L, 9.5g/L and 

10.5g/L respectively, adjust the injection rate in different cases so that the particle residue in the 

DPF is just less than 0.1g, calculate the total injection volume throughout the process and obtain the 

fuel required per unit of particle oxidation, resulting in The results are shown in Figure 1. 

 

Figure 1. Variation in the amount of oil injected to oxidise a unit mass of particulates with the 

initial soot density within the DPF 

As can be seen from Figure 1, although the amount of particulate inside the DPF increases, the 

amount of fuel injected per unit of particulate oxidation decreases in a hyperbolic pattern, 

particularly from 4.5 g/L to 7.5 g/L, with the amount of fuel required per unit of particulate 

oxidation decreasing by 2.1 g/L. The reason for this decrease is that the increase in initial soot 

density allows more particulate to oxidise and exothermise, requiring less external assistance. The 

amount of fuel injected per unit of particulate oxidation is also reduced. It can be seen that 

regeneration at higher carbon soot densities increases the efficiency of regeneration energy 

utilisation. 
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4. Transformer Impact Analysis 

4.1. Analysis of the Effect of POC on PM Emissions 

The results of the before and after particulate (PM) emission comparison of the P0C 

post-processor under the steady state cycle nine operating conditions are shown in Figure 2. It can 

be seen from Figure 2 that before the POC was installed, PM emissions from this diesel engine 

gradually increased with increasing load. At low speed and low load, the PM emission in the 

exhaust gas is low, 0.003g/kw∙h at A25 operating condition, and 0.011g/kw∙h when the load 

increases to A100 operating condition; at medium speed and low load, the PM emission in the 

exhaust gas is 0.003g/kw∙h at B25 operating condition, and as the load increases, the PM ratio 

emission increases to 0.013g/kw∙h at B100 operating condition. At high rpm, PM emissions are 

higher than at medium and low rpm, and PM emissions basically increase with load, from 

0.007g/kw∙h at C25 to 0.017g/kw∙h at C100. After the engine is retrofitted with a POC 

after-processor, PM emissions are significantly reduced at low, medium and high rpm, while at the 

same time, PM emissions increase with load. The PM ratio emissions are significantly reduced as 

the load increases. In particular, at medium and high loads, the inlet temperature of the POC 

catalyst increases with increasing load. Under the higher inlet temperature, PM can be catalytically 

oxidised to CO by the catalyst, and the increase in temperature also enables the DOC catalyst in 

front to produce more oxygen and thus NO with stronger catalytic oxidation performance, ensuring 

that the POC catalyst can be regenerated continuously and passively, resulting in a reduction in PM 

in the exhaust of the POC catalyst. This ensures that the POC catalytic converter can be regenerated 

continuously and passively, resulting in a lower PM value in the POC catalyst exhaust. 

 

Figure 2. Comparison of particulate emissions before and after POC 

4.2. Analysis of NO Conversion Influencing Factors 

From Figure 3, it can be found that the higher the exhaust flow rate, the smaller the NO 
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conversion efficiency (i.e. NO2 concentration increase efficiency) and the narrower the temperature 

window for high conversion efficiency. This is because the higher the exhaust flow rate, the higher 

the air velocity, the shorter the residence time of the exhaust in the channel, and the NO conversion 

efficiency decreases, but the volume of gas handled increases. Therefore, in practical reactor design 

and matching, it is critical to select the right air velocity to achieve the goal of high NO conversion 

and small volume, and the right reactor volume and catalytic coating thickness for a given 

displacement engine. In addition, the exhaust gas flow rate has a strong influence on the NO 

conversion efficiency in the intermediate temperature region, less in the low temperature region and 

almost no influence in the high temperature region, due to the low reaction activity at low 

temperatures, the higher reaction activity at intermediate temperatures and the thermodynamic 

limitations received at high temperatures. The air velocity strongly influences the efficiency of NO 

oxidation, and obtaining high efficiencies at low temperatures requires relatively low air velocities, 

which is particularly important for the correct sizing of the oxidation catalyst. The size of the 

oxidation catalyst should be carefully and economically selected for each application, based on the 

expected flow rate and conversion efficiency requirements. 

 

Figure 3. Effect of exhaust flow rate on NO conversion performance on DOC 

The generation of NO2 in the oxidation catalyst is the focus of the study as the NO2 

concentration is the main medium for the oxidation of particles deposited in the downstream 

particulate trap. Although there is a sufficiently large oxygen content in the diesel exhaust for NO 

oxidation, different oxygen levels still have an effect on the NO oxidation performance in the 

oxidation catalyst. As can be seen in Figure 4, with a constant total exhaust NOX, the NO2/NOX 

ratio at the DOC outlet increases and the NO conversion rate increases as the oxygen concentration 

in the exhaust increases, due to an increase in the concentration of reactive gases involved in the 

NO oxidation reaction. In addition, the thermodynamic equilibrium shifts towards higher 

temperatures, favouring better catalytic activity. At 200°C, the oxygen concentration has almost no 

effect on the conversion rate of NO due to the low activity. As the exhaust temperature increases, 
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the degree to which NO is affected by the oxygen concentration of the conversion rate increases 

until it reaches a maximum at 350°C, and as the temperature continues to increase, the conversion 

rate of NO decreases slightly. 

 

Figure 4. Effect of O2 concentration on NO conversion rate 

5. Conclusion 

With increasingly stringent emission regulations, in-engine cleaning alone is no longer sufficient 

to further reduce emissions of pollutants such as NOX and PM, and the necessary exhaust 

aftertreatment technologies are required. This paper uses artificial intelligence to study and analyse 

diesel particulate emissions, through the analysis of the following conclusions: through the analysis 

of the impact of POC on PM emissions found that the use of POC post-processors can reduce PM 

emissions; through the NO conversion factors found that the oxygen concentration has little effect 

on the conversion rate of NO, the exhaust temperature will affect the NO conversion rate oxygen 

concentration. Due to the professional and time constraints received, there are many shortcomings 

in this paper, which need to be improved and perfected. 
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