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Abstract: Landslide disasters are extremely harmful geological events. The occurrence of 

landslides will pose a great threat to human life and property safety, and will also cause 

huge damage to the environment and ecology, restricting human sustainable development. 

The survey data shows that the proportion of landslide disasters in China ranks first among 

all geological disasters, accounting for 74%. Therefore, it is of great economic value and 

social significance to take necessary and effective landslide disaster assessment studies to 

effectively predict landslide disasters. After decades of scientific exploration, China has 

made gratifying results in the study of landslide disasters, but there are still some problems 

in the quantification of the self-organized criticality of regional geological disasters, 

frequency and spatial dependence; The selection of evaluation factors in the analysis of 

landslide disaster susceptibility, the limit of risk assessment and susceptibility analysis also 

need to continue to explore. The purpose of this article is to predict regional landslide 

geohazards based on geological clouds and meteorological data. This paper fully absorbs 

the core idea of Logistical and solves the problem of sample quantification in the process 

of evaluation and prediction of large regions. Based on the comprehensive advantages of 

GIS technology and Logistical method, a risk assessment model is established. Taking 

Xinjiang landslide disaster as an example, the danger of landslide disaster is evaluated. 

This article concludes that the analysis of the landslide disaster in Xinjiang shows that 

when the cumulative landslide displacement is between 0. 2 and 0. 4m, the landslide is in a 

critical state, and an orange warning message is issued. When the cumulative landslide 

displacement value is greater than 0. 4m, the landslide is in danger. Status, release red 

warning information.  

1. Introduction 

With the continuous improvement of human society's transformation of nature in the course of 



International Journal of Engineering Technology and Construction 

32 
 

development, nature's carrying capacity for human activities is also facing severe challenges. At the 

same time, humans are also facing challenges from nature. Among them, the occurrence of 

geological disasters such as landslides is An important factor affecting the eternal development of 

humankind. As the global crustal movement becomes more active, geological disasters have begun 

to develop in a more frequent and more frequent direction. Both China and the world have been 

widely affected by geological disasters in recent years. For example, a catastrophic debris flow in 

Zhouqu, Gansu, a landslide in Wamatsen, Yunnan, and a fugitive debris flow in Yunnan have caused 

great casualties and economic losses. It has seriously affected human production and life, and 

economic development has been severely hindered. A landslide is a"slope"rock-soil mass that 

shears and slides along a weak surface. About 70%of China's land is mountainous landforms and 

complex geological structures, which objectively determines that China is a country with very 

frequent and serious geological disasters. Geological disasters have many types, wide distribution 

and frequent occurrences. Since the 20th century, China's economy has entered a period of rapid 

development. With the expansion of human activity space and the expansion of the scope and scale 

of engineering activities, landslides and other geological disaster emergencies have been increasing 

year by year. China's vast territory, diverse climate, and complex topography have made most areas 

prone to geological hazards. After years of analysis of geological hazard statistics, we know that 

landslides and other geological hazards are most widely distributed in Sichuan, Yunnan, and Tibet. 

The main areas of distribution are also multi-type, large-scale, frequent, and widely distributed.  

Regarding the susceptibility and hazard evaluation of landslide disasters, both domestic and 

foreign have been extensively and deeply studied, but the pros and cons of various evaluation 

methods have not been uniformly and completely recognized, and a complete set of evaluation 

standards have not been formed. The landslide risk is based on the susceptibility factors such as 

earthquakes, rainfall, and human engineering activities. At present, the landslide risk assessment is 

still in the exploratory stage, especially the research on the theoretical system and framework of 

landslide risk assessment for geological disasters has not yet been unified. Since the 1990s, with the 

rapid development of GIS and RS as the basis, the research on the methods of geological hazards 

has become more abundant, such as logistic regression models in statistical classification models, 

discriminant analysis, and generalized additive models. Due to the complexity of topographical and 

geological factors and the occurrence of landslide disasters, more flexible non-linear methods have 

been applied to research, especially artificial neural networks, support vector machines, Gaussian 

process models, and random forests. However, the application effects of various models are 

different due to different regional geological environments and climatic factors, and the adaptability 

of different analysis area scales to each model method is different. Therefore, it is easy to analyze 

different landslide geological disasters through selected research areas. The applicability of the 

assessment model for occurrence of geological disasters, and the selection of the most effective 

assessment method of geological disaster-prone areas among various methods has important 

theoretical and practical significance. Explore the development characteristics of landslide disasters 

in the study area, and provide a certain theoretical basis for the landslide susceptibility and risk 

assessment, as well as the prevention and treatment of landslide disasters.  

Dingde Xu put forward a realistic approach to the risk assessment of regional landslide 

geological hazards, that is, the evaluation can follow the process of"genetic mechanism analysis→

subregional division→sensitivity factor analysis and qualitative analysis reasoning→mathematical 

model analysis→comprehensive evaluation"A process is well integrated into the"GIS system for the 

evaluation and prediction of regional landslide geological hazards"independently developed based 

on MAPGIS[1]. Ari J. Posner discussed the application and development trend of GIS, remote 

sensing(RS), grey correlation and Logistic regression analysis in the evaluation of landslide stability. 

Studies have shown that GIS and RS technologies have great application prospects in the evaluation 
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of regional landslide stability with their powerful information acquisition and processing functions, 

and for the analysis of the relationship between factors affecting the stability of landslides, gray 

correlation and Logistic Regression analysis is easier to operate, economical, and has higher 

accuracy[2]. Peng Ling calculates the importance of each factor through rough sets and reduces the 

data. The neural network is used to simulate the reduced data to build a model for prediction. It 

takes full advantage of the ability of rough set theory to reduce data and the generalization of neural 

networks. And fault tolerance, so that the selection of the prediction index system is more basis, and 

the prediction results obtained are more interpretable, which can reduce the factors involved in the 

prediction and effectively improve the prediction efficiency[3]. W. Sai took the academic thought 

of"geological process mechanism analysis-quantitative evaluation"as the core, combined with 

detailed investigation of field geological hazards, established a set of landslide stability analysis and 

prediction methods, and formed a relatively complete study of landslide stability analysis. Technical 

route[4].  

This paper fully absorbs the core idea of Logistic, and solves the problem of sample 

quantification in the process of evaluation and prediction of large regions. Based on the 

comprehensive advantages of GIS technology and Logistic method, a risk assessment model is 

established. Taking Xinjiang landslide disaster as an example, the danger of landslide disaster is 

evaluated. The results show that the integration of GIS technology and statistical methods is of 

feasibility and practical significance for the research on the assessment of geological disaster risk in 

large regions.  

2. Proposed Method 

2.1. Establishment of Spatial Database 

In this study, by using the functions of graphic editing and data management in Arc GIS, 

graphics files in different formats were converted into formats that meet their own needs. The layer 

is subjected to spatial overlay analysis, and the number of landslides in each category is statistically 

analyzed to obtain the relationship between the landslide in the study area and its influencing 

factors. The data is transferred to a file and the data is entered into the spatial database from various 

files. [5-6 ].  

The spatial database mainly has two parts: a graph database and an attribute database. Based on 

the GIS technology to establish a graphical database and attribute database of geological disasters, 

and to achieve seamless connection of graphical data and attribute data, and two-way query and 

retrieval of data [7]. Using the functions of grid calibration, vectorization of pictures, vectorization, 

rasterization, and coordinate projection of Arc GIS to process each evaluation factor layer, 

transform each indicator layer into a grid layer with the same projection coordinates, and apply the 

space of Arc GIS The analysis layer overlay function superimposes the selected landslide hazard 

factors together with the landslide disaster points, and statistically analyzes the number of landslides 

in the category [8-9]. Finally, the establishment of a landslide disaster spatial database, that is, a 

graphic database and an attribute database, and the connection between the two can be realized, and 

the data can be checked and browsed.  

2.2. Analysis of Landslide Impact Factors 

The formation of geological hazards is the result of a variety of factors, and each impact factor 

has a different degree of importance to the occurrence of geological hazards. Therefore, when 

evaluating the susceptibility of geological hazards, a reasonable choice of evaluation indicators 

(influencing factors) is an important prerequisite for evaluating hazards of geological hazards [10]. 
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The relationship between the occurrence probability of geological hazards and the evaluation 

indicators of geological hazards can be expressed in mathematical language, that is, the mapping 

relationship between the occurrence probability of geological hazards and the evaluation indicators: 

),...,,(
21 xxx n

fP                  (1) 

Among them, P is the probability of occurrence of geological disasters, and xxx n
,...,,

21
 is the 

factor that affects the occurrence of geological disasters. Elevation, topographic relief, slope, river, 

fault structure, precipitation, etc. are all important factors affecting the probability of geological 

disasters [11].  

2.3. Evaluation Factors of Geological Hazard Status 

Geological hazard status evaluation factors include the number and scale of landslide geological 

hazards that have occurred [12]. Relative density refers to the occurrence of geological disasters per 

unit area, and it can quantitatively indicate the intensity of landslide activity in a unit area under an 

influence factor [13-14]. This method can overcome the change in the number or area of landslide 

impact factors in different values. The relative point density and relative area density is the number 

or area of landslide disaster points in each secondary classification factor, divided by the area of 

each secondary classification factor, and can be expressed by the following formula: 

S

N

SN
D

S
NSN

i

iii                 (2) 

Among them, D is the relative density of landslide points or areas;S is the total area of the study 

area; S i
is the area containing an impact factor; N i

is the number or area of landslides distributed 

within an evaluation factor;N is the total number of landslides in the study area Or total area[15]. 

The value of relative density can reflect the frequency and activity intensity of landslide disasters.  

2.4. Fractal Characteristics of Landslide Impact Factors and Spatial Distribution 

Studying the fractal relationship between the distribution of landslides and its influencing factors 

can get the sensitivity of landslides to different influencing factors, and then provide basic data for 

the evaluation of susceptibility and zoning. However, in this type of related research, events that 

meet the constant-dimensional fractal strictly There is no such thing. At this time, the 

constant-dimension fractal cannot meet the needs of work [16]. In fractal, the fractal dimension D is 

not constant, but when there is some functional relationship with the feature scale r, we call it a 

variable-dimensional fractal. Its functional relationship is expressed as: 

)(rgD                    (3) 

For the functional relationship )(rfN  between N and r, let r
D

Crf


)( , then 
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                 (4) 

Studies have shown that the change law of any parameter A with the recurrence period can be 

transformed into a variable-dimensional fractal. If the constant-dimensional fractal is regarded as a 

first-order fractal, if the fractal dimension is rC DD
'

' 
 , then the fractal of the first-order fractal 
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can be performed again, and the fractal of N-order can be obtained by analogy [17-18]. Its 

expression is: 

First-order fractal rCN D1

11
 , where D1

 is constant.  

Second-order fractal rCN D1

12
 , where rCD D2

21
 ; D2

; is a constant.  

N-order fractal rCN Dn

n

1

12




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

1-
; Dn

;is a constant.  

It can be seen that the variable-dimensional fractal of any order can be transformed into the form 

of constant-dimensional fractal. Multi-order fractal can be processed through order accumulation to 

derive cumulative and changing fractals[19]. The specific steps are: 

(1)Project the original number of pairs of ),( rN ii
into the double-logarithmic coordinate system 

according to the sequence from small to large, and calculate the D ii 1, 
in the double-logarithmic 

coordinate system between two adjacent points. Due to the large fractal dimension, there is no 

regularity[20]. The solution formula of D ii 1, 
is: 
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Among them, S1, S2, S3, . . . Sn are the cumulative sum sequence of the corresponding fractal 

orders.  

(3)According to the above formula, from the logarithmic coordinate system, n-1 line segments 

with unequal slopes can be obtained. The opposite numbers of these slopes are the first-order 

cumulative and variable-dimensional fractal dimensions;the same can be obtained Above the 

first-order cumulative and variable-dimensional fractal dimension[21-22]. With the increase of the 

fractal order, the data points accumulated and formed by each order in the double logarithmic 

coordinate system will eventually show a good linear relationship. At this time, a linear regression 

model can be used to calculate the parameters of the linear relationship to obtain its constant fractal 

dimension D[23].  

1)The fractal characteristics of landslide and slope In the relationship between landslide and 

slope, the slope step is 10°, and the landslide area and step are counted. With the increase of the 

slope, it will appear, and the graph trend of first increase and then decrease, the peak appears 

between 20°and 30°. After performing double logarithmic processing on the data, it does not show 

the characteristics of constant-dimensional fractals[24]. The data are accumulated and transformed 

at a higher order, and the spatial distribution of the landslide area and the slope show a good linear 

relationship on the third-order accumulation sum curve. The linear regression fitting is performed 

on the third-order cumulative sum transformation data, and the fitting correlation coefficient is close 

to 1, which indicates that the landslide spatial distribution and the slope have a third-order 



International Journal of Engineering Technology and Construction 

36 
 

cumulative and variable-dimensional fractal relationship, and its fractal dimension value is

2.5316
3
D .  

2)Fractal characteristics of landslides and elevations 

The increase in elevation will affect the probability and scale of landslide geological disasters. 

The step size of the elevation is 500m for statistical classification, and a level greater than 3500m is 

a level[25]. It can be analyzed that there is no obvious linear relationship between landslide area 

and elevation. The high-order accumulation and variable-dimensional fractal are performed between 

the landslide area and the elevation, which has a good linear relationship in the second-order 

accumulation and the double logarithmic model with the characteristic scale r, indicating that there 

is a second-order accumulation between the landslide area and elevation And the variable 

dimension fractal relationship, its fractal dimension 3.1693
2
D , the correlation coefficient R=0. 

9946[26-27].  

3)Fractal characteristics between landslide area and fault buffer zone 

In Arc GIS, the step length of the fault is 1km, and a buffer zone with a buffer radius of 10km is 

made, and the area of landslide geological disasters in each buffer zone is counted. By calculating 

the double logarithmic relationship, there is no constant-dimensional fractal feature between the 

landslide area and the fault buffer zone[28]. A high-order accumulation and transformation is 

performed on the data pairs of the landslide area and the fault buffer to establish different-order 

fractal models. It is found that the linear relationship between the landslide area and the fault buffer 

in the first-order cumulative and double logarithmic model is better than that of the second-order 

cumulative sum model. The linear regression curve fitting degree R=0. 9987 is closer to 1. We 

believe that there is a first-order cumulative and variable-dimensional fractal relationship between 

the landslide area and the fault buffer, and its fractal dimension is 1.3215
1
D .  

4)Fractal characteristics between landslide area and lithology 

According to the softness and hardness attributes of lithology, a double logarithmic relationship 

between landslide area and lithology is established using numerical codes. In the high-order 

cumulative and variable-dimensional fractal, there is an optimal linear relationship between the 

landslide area and the lithology in the first-order cumulative and double-logarithmic coordinate 

system, and the fitting correlation coefficient R=0. 9927. Therefore, there is a first-order cumulative 

and variable-dimensional fractal between the landslide area and lithology, and its fractal dimension 

is 2.1925
1
D .  

2.5. Logistic Regression Model 

Logistic regression model is a statistical analysis method commonly used for regression analysis 

when the dependent variable will only occur in two cases. It mainly analyzes the independent 

variable for the dependent variable. Regression analysis reveals the correlation between the various 

evaluation variables and predicts the dependent variable the trend of. Its advantage lies in the lower 

requirements on the data freedom of independent variables. The data can be discrete, normal 

distribution, or binary classification, which makes it widely used in landslide disaster risk 

assessment.  

Logistic regression model, the expression is: 

e
xy ii

P
εi

1

1
)|1(


                (10) 

βε α
ii
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In the formula, xi
is an independent variable, α andβ

i
are coefficients, andεi

is a linear function 

composed of evaluation indexes. The independent variable and the probability of occurrence of the 

event P are non-linear monotonic functions. The conditional probability P increases with the 

increase of xi
, and the value range changes between 0-1. The function curve is S-shaped. This 

characteristic of the logistic regression model fits well the relationship between the occurrence of 

landslide disasters and the evaluation indicators.  

Therefore, the conditional probability of an event Pi
: 

e
e

e
Pi βi+α

βi+α

)βi+α(
11

1









              (12) 

The conditional probability that an event does not occur is: 

ee
e
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1
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
              (13) 

Taking the natural logarithm of the ratio of P to(1-P), we obtain a continuous function, which is 

recorded as Logit P, and its value range is(-∞, ∞). This establishes a parameter with xxx n
,...,,

21

as the independent variable and P as the dependent variable. Regression equation: 
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In the formula, α0
is a constant term, which represents the logarithm of the ratio of the 

conditional probability of occurrence to the conditional probability of non-occurrence without being 

affected by any influence factor; βββ
n21

,...,, is the logistic regression coefficient. Logistic 

regression model error terms obey the binomial distribution.  

In the risk assessment of landslide geological hazards, the occurrence of landslides is a 

dependent variable. There are only two cases. They are a typical binary classification variable. 

Various evaluation indicators(slope, rainfall, earthquake, stratum lithology, Body structure and 

human engineering activities, etc. )can be used as independent variables. As long as the regression 

coefficient is calculated through regression analysis, the probability of landslide occurrence P can 

be obtained, which indicates the possibility of landslide occurrence, and then the landslide disaster 

danger level is divided according to the P value.  

The logistic regression model uses the maximum likelihood method to estimate the regression 

coefficients. It is not used in the conventional least square method of the linear function. The 

logistic regression model is a nonlinear evaluation model, which is slightly different from the 

conventional linear model. Firstly, the dependent variable of the logistic regression model is a 

binary classification variable, only 0 or 1. Secondly, the dependent variable of the logistic 

regression model and the multivariate independent variable have a non-linear relationship, and the 

distribution conditions of the independent variable are relatively low.  

After the logistic regression model is built, it is necessary to conduct a feasibility test. The test of 

the model mainly evaluates the model from the aspects of the significance of the regression 
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coefficients, the fit of the model, and the multicollinearity of the independent variables. Only 

through a series of tests can we get the most reasonable evaluation model and the final accurate 

results.  

2.6. Evaluation Index Normalization 

The core of Logistic regression analysis is to obtain the logistic regression coefficient. According 

to formula(14), the regression coefficient is calculated by logistic regression on the basis of the 

influence factor index value. However, due to the different scales and dimensions of each evaluation 

index, in order to facilitate the calculation in the Logistic regression model, it is necessary to unify 

the dimensions of each evaluation index, as shown in the following table. This paper adopts the 

dimensionality normalization method of the evaluation index proposed by Ayalew of Japan:First, 

the evaluation index is classified, and then the historical landslide disaster area S
z

ij
and the 

secondary index area S ij
in the secondary factor under a single evaluation index are used to find the 

ratio Rij
. (6), and then normalize the Rij

, as shown in equation(17).  

S
S

R
ij

z

ij

ij
                   (16) 
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ij
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                (17) 

In the formula: i is the i-th evaluation index; j is the j-th subset of the i-th evaluation index; and 

m is the number of the subset in the i-th evaluation index.  

Table 1. Evaluation index normalization index 

Evaluation 

index 

Index 

classification 

Landslide 

area (km
2
) 

Area (km
2
) 

 Rij
 X ij

 

 0~20° 1. 31 54. 36 0. 0136 0. 1218 

slope 20°~40° 19. 63 163. 95 0. 2052 0. 9315 

 40°~60° 2. 96 225. 53 0. 0213 0. 0752 

 >60° 0. 12 4. 63 0. 0015 0. 0081 

 0~400 12. 15 63. 92 0. 2135 0. 4157 

Tug of 

War 
400~1000 16. 17 93. 66 0. 1426 0. 3917 

Elevation 1000~1500 3. 19 153. 68 0. 0217 1. 1633 

 1500~2000 0. 057 103. 62 0. 0036 0. 0082 

 >2000 0. 001 42. 19 0. 0073 0. 0052 

Slope 
Reverse 

slope 
8. 16 65. 31 0. 1285 0. 5693 

structure 
Horizontal 

slope 
15. 62 253. 47 0. 0518 0. 1963 

Evaluation 

index 

Consequent 

Slope 
5. 39 75. 73 0. 0763 0. 4219 
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2.7. SPSS Determine Regression Coefficient 

The regression coefficient of the logistic regression model is generally determined by SPSS 

software. Before calculating the regression coefficient, you need to make some preparations: 

(1)The landslide disaster distribution map in the study area is coded. The area where the 

landslide occurred is assigned a value of 1 and the rest are 0, and rasterized.  

(2)Based on the discussion of the landslide control factors in the study area, 7 indicators such as 

slope, tug-of-war elevation, slope structure, river system, rainfall, and human engineering activities 

were selected as the independent variables xi
, and the indicators determined based on the 

normalization of the indicators The value X ij
is rasterized.  

(3)Use the grid transformation function of ArcGIS to convert each thematic layer into ASCII 

code, import SPSS, remove invalid data, and perform logistic regression analysis.  

Stepwise regression analysis was used in SPSS software to determine the regression coefficient. 

According to the regression coefficients, it can be seen that the factor that has the greatest impact on 

landslide disasters in the study area is the lithology of the formation. On the one hand, the main 

reason for this is that the landslides in the study area are mostly lithologically dominated by 

carbonaceous phyllite, with thin rock layers. The stratigraphy is good, the lithology is soft, and 

deformation and damage are easy to occur. On the other hand, strata dominated by carbonaceous 

phyllite are mostly developed along the mainstream of the Zagunao River. The river flow intersects 

with the stratum at a small angle, forming The longitudinal river valley is a slope structure that is 

favorable for slope deformation and damage.  

3. Experiments 

3.1. Overview of the Study Area 

Xinjiang has a vast area, complex topographical and landform changes, large differences in 

topography, significant development of fault zones, active tectonic movements, and fragile 

geological environments. Therefore, it is extremely easy to induce various types of geological 

hazards under special conditions, and the frequency of outbreaks is high and the impact range is 

wide. There are also many historical disaster points in Xinjiang.  

During the early years, after analysis and statistics, it was found that about 70%of landslide 

disasters occurred in the Yili River Valley. There are about 66 large and large landslide events, 

concentrated in Xinyuan County;most of the debris flow disasters are concentrated in Kizilsu Kirgiz 

Autonomous Prefecture, southwest of Kashgar, south of Changji Hui Autonomous Prefecture, and 

northern Bayingoleng Mongolia Autonomous Prefecture. And other areas. There are about 59 large 

and large debris flow events;about 30 large and large collapse events.  

3.2. Data Source and Preprocessing 

The data used in this study are information from Xinjiang, including DEM data, land use, fault 

structure, lithology, roads, historical disaster points and hidden danger points. First of all, because 

the data sources are different, and considering that the calculation of area, length, etc. will be 

involved in the experiment, the Albert equal area projection is uniformly used.  

(1)Digital elevation model. The digital elevation model data can not only obtain the terrain 

factors(such as slope, angle, slope curvature)in specific regions, but also the hydrological 

parameters. The evaluation process will involve spatial superposition operations, so the thematic 

data needs to be rasterized. According to the choice of grid size at different scales. The study 
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compared the digital elevation models generated by two data sources, namely the global elevation 

model from ASTER and the 20m accuracy contour line provided by Georgia. The minimum raster 

accuracy of the landslide range prediction software Flow-R for the regional range is 50m;the 

elevation accuracy of the ASTERGDEM data is lower;the ASTER data is more affected by the 

original format when interpolating the 50In raster, and the 20m accuracy contour is better. Therefore, 

the digital elevation model used in this study was obtained by interpolation of contours with a 

precision of 20m, and the grid size was 50m.  

(2)Water network and road network. Water network data comes from the digital elevation model 

and is processed by the software ILWIS. Here the water network does not only refer to the river 

area, but generally refers to the area where the terrain is gully. Disasters such as debris flow occur in 

gullies. In this paper, when the catchment range is set to 0. 5km, a water network is formed. 

Statistics show that roads in steep areas have contributed greatly to landslide disasters.  

Rely on the Arc GIS platform to convert and resample thematic data and DEM.  

3.3. Implementation of Wireless Sensors 

The architecture of the automatic monitoring and early warning system for geological disasters 

based on wireless sensor networks is mainly composed of wireless sensor network gateways, 

backbone networks, and user networks.  

WSN is composed of sensor nodes in AdHoc mode. The backbone network mainly refers to 

GSM, Internet and satellite networks. The gateway realizes transparent interconnection between the 

sensor network and the backbone network. Sensor nodes deployed inside the monitoring area must 

be able to self-organize into a network in a wireless AdHoc manner. At the same time, the 

environmental information collected by each sensor node is transmitted to the gateway through 

multi-hop routing. After various sensor data is transmitted to the gateway, it is then transmitted to 

the user network through the backbone network.  

The background management software consists of 3 parts, namely:WSN, transmission network 

and background management software. WSN collects data in the monitoring area, and transmits 

various sensor data to the background management software through the transmission network. The 

background management software analyzes, processes, and stores these data in order to obtain 

relevant information about WSN(raindrops, soil moisture content, nodes Displacement), and 

monitor the operation and environmental conditions of the WSN. In addition, the background 

management software informs WSN through the transmission network in order to complete specific 

tasks. The main tasks of developing background management software are database design, data 

processing engine design, background component design and user graphical interface design. 

Node-level programming is performed on the Tiny OS operating system. nesC language is an 

extension of C language, so use nesC language for programming. When writing nesC programs, the 

core work is to write various components, and then connect the components according to some 

specifications. Management machine level programming is programmed in a C#environment. The 

front-end system software is mainly composed of 5 modules:parameter setting module, data 

acquisition module, data processing module, output module and data management module.  

3.4. Landslide Monitoring 

For a long time, early warning of landslides has been a difficult problem, and monitoring is an 

important physical premise for early warning. This research group began to install monitoring signs 

in the danger zone of mountain slides from March 2017. In order to grasp the deformation dynamics 

of mountain sliding. From the monitoring results, the landslide is generally stable. The maximum 

cumulative displacement of the surface monitoring point is nearly 50mm. It is located in the upper 
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part of the landslide. No major deformation occurred.  

4. Discussion 

4.1. Numerical Simulation Analysis of Landslide Stability 

The current mathematical model methods for landslide stability analysis can be divided into two 

categories, one is the rigid body limit equilibrium method based on limit equilibrium theory, and the 

other is the numerical analysis method. The finite element method is used in the research of this 

subject. In the typical position of the landslide, four calculation profiles were selected for the 

stability calculation of the landslide body under saturated and anhydrous conditions.  

4.2. Finite Element(FEM)Analysis of Landslide Stability 

This calculation uses ANSYS version 6. 0, adopts nonlinear analysis in structural statics, and 

selects a plane four-node element and Drucker-Prager constitutive model. During the calculation of 

the profile, the calculated profile was selected to be more than 3 times the area ofthe landslide. A 

total of 1659 units and 1873 nodes were divided. The grid was encrypted at the landslide surface, 

slope top, and slope foot. The level was applied at the bottom and rear boundaries of the calculated 

profile Constraints on direction and vertical direction. The physical and mechanical parameters of 

rock and soil are shown in Table 2. The parameters in the brackets in the table are the parameters 

when the slope is dry. Geomechanical physical and mechanical index analysis of the stress on the 

profile and the other three profiles shows that the stress of the landslide body under both water-free 

and saturated conditions is mostly compressive stress, and the direction is down the landslide. The 

value is not large, there are few places where tensile stress appears, it usually appears on the top of 

the trailing edge of the calculated section, and sometimes the tensile stress appears on the landslide 

surface, but the value of the tensile stress is very small. Generally speaking, tensile stress is likely to 

be caused on the landslide surface, the top of the trailing edge of the calculated slope surface, the 

upper part of the subgrade landslide, and the joint between the fill and the original soil. From the 

calculation of displacement, the landslide displacement in the two conditions mainly occurs in the 

landslide body. The displacement at this part is significantly larger than other parts. The direction is 

vertically downward or downward along the landslide direction. The displacement value is not very 

large. Change between 5~12cm.  

Table 2. Physical and mechanical indexes of rock and soil under profile conditions 

Rock 

formation 

Modulus of 

elasticity / M 

Pa 

Poisson's 

ratio 

Cohesion / 

k Pa 

Internal 

friction 

angle / 

( ｡) 

Density/ 

(Kg. m-3) 

Fill 7. 35 0. 37 28. 68 16. 52 1. 91 

Silty clay 5. 82 0. 33 26. 72 15. 63 1. 89 

Pebbly 7. 96 0. 42 32. 31 8. 69 1. 93 

Clay 

layer 
8. 11 0. 35 50. 26 19. 41 2. 05 

4.3. Geological Environmental Conditions 

Geological environment conditions mainly include several aspects such as topography, faults, 
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lithology types and vegetation coverage. Different geological environmental conditions affect the 

landslide in different ways and magnitudes.  

Elevation can affect precipitation, groundwater runoff, vegetation coverage, changes in stress 

values on slopes, and the range of human activity. Due to the difference in distance from the water 

vapor source, there will be a large deviation in the content of water vapor and the intensity of 

transportation in the influence of the direction, height, slope and local topographical factors of the 

mountain range. At a large scale, elevation is the main factor affecting precipitation, and there is an 

inverse correlation between elevation and precipitation, that is, as the elevation increases, the 

precipitation decreases. The change of surface runoff is similar to the elevation. For large scale, the 

runoff decreases with the increase of elevation. For example, the Lancang and Nujiang basins have 

obvious anti-correlation. On the other hand, the distribution of vegetation and elevation, 

precipitation, slope, aspect and elevation are interdependent. Elevation is a gradient characteristic 

that determines the distribution of vegetation. At different elevations, there are obvious differences 

in vegetation types and vegetation diversity. In low-altitude water-rich areas, vegetation growth is 

good and vegetation is rich and diverse. In high-altitude areas, vegetation is single. Most are hardy 

vegetation. The elevation can control the stress value of the slope body, and the stress value will 

increase with the increase of the slope height. Finally, the intensity of human activity is different at 

different elevation ranges. Relatively high altitude areas, the population is concentrated, and the 

surrounding natural environment is strongly transformed. At high altitudes, the population is scarce 

and materials are scarce. All in all, elevation affects the distribution of these factors to varying 

degrees, and these factors are important inducers that affect the occurrence of landslides.  

According to the DEM chart, it is reclassified into 8 grade types as shown in Figure 1 below, 

which shows a wave-like decline as the elevation increases. The relative density of points and areas 

with elevations below 500m are relatively high, and these areas have been disturbed by the erosion 

of rivers and human activities. The point relative density and area relative density are small peaks 

within 1500-2000m, and the slopes in these areas have formed steep slopes. As the elevation 

increases, the landslide point density and area density decrease. The higher the elevation, the deeper 

the groundwater is buried, the human activity is weak, and the slope is stable.  

 

Figure 1. Relationship between landslide disaster density and elevation grade 

4.4. Landslide Warning 

The spatial identification method is usually used to determine the danger area of landslide 

occurrence or potential occurrence, and to issue early warning information. It is highly subjective 
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and cannot accurately determine the stability of the landslide body and the dangerous period of the 

landslide, which brings hidden dangers to local residents'safety. The landslide state early-warning 

method mainly focuses on the change signs of the landslide body in a critical state. The relevant 

early-warning indicators are determined through various methods, and the threshold value is 

determined based on the change of the landslide body's early-warning value in different critical 

states, and the warning information is issued based on this. Through the establishment of models, 

empirical formulas and data statistics, the following warning indicators are determined: 

(1)Daily rainfall 

Select the A5 sensor in the area where the displacement of the landslide is more serious as the 

criterion. Observe the relationship between the landslide sliding distance and rainfall during the 

period of frequent rainfall from June 19, 2018 to July 19, 2019, as shown in Figure 2. It can be 

found that there is a strong positive correlation between the landslide displacement value and the 

daily rainfall, and the displacement value has a lag of 2 to 3 days relative to the change in rainfall.  

 

Figure 2. Image of relationship between landslide displacement and daily rainfall 

(2) Sliding rate 

Rainfall changes significantly with the seasons. Corresponding to rainfall, the changes in 

landslide displacement are mainly concentrated in June to July. It is generally believed that when 

the landslide body is in a relatively stable state, seasonal precipitation will have little effect on it, 

and the state of the landslide body will not change drastically. When the landslide body is in the 

critical state of occurrence, the displacement value and displacement rate will follow the seasonal 

rainfall. The changes in characteristics and their obvious changes, deformation phenomena and 

signs can be used as early warning criteria for landslide conditions. The following figure 3 shows 

the displacement cumulative curve and daily displacement curve of the A5 sensor from June to July 

2018: 
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Figure 3. Diurnal change curve of A5 sensor displacement 

Based on the selection method of the above-mentioned landslide state early-warning indicators 

and the monitoring curve change law, the following early-warning criteria can be summarized: 

1)The displacement of the landslide body changes significantly with the season, and the sliding 

rate exceeds 100mm/month; 

2)The daily sliding rate increases suddenly and sharply, and the value is greater than 10mm for 

more than 10 consecutive days. Red warning information is issued when both of the above criteria 

are met, and orange warning information is issued when one of the criteria is met. From this, orange 

warning information can be released for the study area in June 2018, and red warning information 

can be released for the period from June 12 to June 23.  

(3)Cumulative displacement 

By studying the monitoring data and analyzing the change of the cumulative displacement of 

multiple landslide bodies in the critical state, the following conclusions are obtained:The 

cumulative displacement values of different landslides in the critical state are different, and the 

differences are obvious. The size of the cumulative displacement value alone cannot Accurately 

release early warning information. In order to show the characteristics of the landslide body, the 

cumulative displacement value is compared with the length of the landslide body in the sliding 

direction, and the percentage is used to determine the change of the landslide body. Generally, the 

displacement ratio in the critical state is between 0. 4%and 0. 8%. between. The main landslide 

body in the study area is about 70m wide and 90m high, and the length of the landslide body is 

about 50m in the sliding direction. According to the above conclusions, it can be calculated that 

when the cumulative displacement of the landslide is between 0. 2 and 0. 4m, the landslide is in a 

critical state. Early warning information, when the cumulative displacement value of the landslide is 

greater than 0. 4m, the landslide is in a dangerous state, and red warning information is issued. 

Therefore, from June 21, 2018, the cumulative landslide displacement value reached 0. 2m, and 

orange warning information should be issued. From July 8, 2018, the cumulative displacement 

value of the landslide reached 0. 4m, and red warning information should be issued.  
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Figure 4. A5 sensor cumulative displacement curve 

5. Conclusion 

China has a vast area and frequent geological disasters, and increasingly serious geological 

disasters threaten the lives and property of the people at all times. In the past two or three decades, 

domestic and foreign scholars have done a lot of work on geological disaster monitoring. Because 

of its ability to realize remote automatic monitoring, wireless sensor technology has the 

characteristics of dynamic network flexibility, adapting to changes in the physical network at any 

time, low cost and reliability. It is more and more used in geological disaster monitoring.  

This paper fully absorbs the core idea of Logistic, and solves the problem of sample 

quantification in the process of evaluation and prediction of large regions. Based on the 

comprehensive advantages of GIS technology and Logistic method, a risk assessment model is 

established. Taking Xinjiang landslide disaster as an example, the danger of landslide disaster is 

evaluated. The results show that the integration of GIS technology and statistical methods is of 

feasibility and practical significance for the research on the assessment of geological disaster risk in 

large regions. As a preliminary research result, there are still some problems in the model design 

that need to be improved. For example, the formation mechanism of geological hazards is not a 

linear system. Try to introduce a nonlinear model to optimize the existing results. Research on 

proper grid division.  

This article concludes that the analysis of the landslide disaster in Xinjiang shows that when the 

cumulative landslide displacement is between 0. 2 and 0. 4m, the landslide is in a critical state, and 

an orange warning message is issued. When the cumulative landslide displacement value is greater 

than 0. 4m, the landslide is in danger. Status, release red warning information. Therefore, from June 

21, 2018, the cumulative landslide displacement value reached 0. 2m, and orange warning 

information should be issued. From July 8, 2018, the cumulative displacement value of the 

landslide reached 0. 4m, and red warning information should be issued.  
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