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Abstract: With the development of the Internet of Things, 5G/6G, artificial intelligence and 
distributed computing technology, edge computing has become a core service paradigm 
with its advantages of low latency and high bandwidth. However, it faces challenges such 
as task explosion, heterogeneous resources, and uneven geographical distribution, resulting 
in insufficient bandwidth prediction accuracy, high scheduling costs, difficulty in 
unloading decisions, and load imbalance. Existing research has limitations in multi-scale 
feature capture, multi-objective optimization, and heterogeneous resource adaptation. This 
study constructs a full chain intelligent optimization framework: the Fre iTT model is used 
to capture the periodic characteristics of bandwidth and fuse spatiotemporal dependencies, 
reducing temporal prediction errors by 4.46% to 88.39%; Design HLSPSO algorithm to 
optimize the bandwidth cost of transmission tasks; By jointly optimizing the energy 
consumption, latency, and load balancing of computing tasks through TOPPO algorithm, 
the performance is improved by 8.36% to 21.75% compared to six DRL algorithms; 
Develop Rainbow LBO algorithm to reduce load imbalance by 3.10% to 23.43%. The 
results have been applied to actual systems, promoting the implementation of edge 
computing in industrial intelligent networks, AIGC and other scenarios. In the future, it is 
necessary to explore cross layer resource collaboration, spatio-temporal adaptation of task 
scheduling, and federated learning privacy protection to promote edge computing to be 
more intelligent, efficient, and secure. 

1. Introduction 

With the rapid development of the Internet of Things, 5G/6G, artificial intelligence and 
distributed computing technology, edge computing, as a new computing paradigm, realizes low 
latency and high bandwidth service supply through the "terminal edge server" two-tier architecture, 
and becomes the core technology supporting major projects. However, the edge computing network 
is faced with the challenges of user task explosion, strong resource heterogeneity, and uneven 
geographical distribution, resulting in insufficient accuracy of bandwidth demand prediction, high 
cost of task scheduling, difficulty in unloading decisions, and unbalanced load. It is urgent to 
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achieve accurate resource demand prediction and task scheduling optimization through artificial 
intelligence technology. The existing research has the following shortcomings: in terms of 
bandwidth demand prediction, traditional time-domain models are difficult to capture multi-scale 
features and frequency changes, and the prediction accuracy is insufficient; Task scheduling 
optimization ignores bandwidth costs and uneven geographic distribution, resulting in idealized 
scheduling strategies; The unloading of computing tasks often adopts single objective optimization 
(such as latency or energy consumption), ignoring the need for multi-objective joint optimization; 
Heterogeneous resource load balancing does not fully consider the performance bottlenecks and 
load accumulation effects caused by server heterogeneity. The research motivation stems from 
practical scenario requirements, such as real-time video analysis, AIGC tasks, industrial Internet of 
Things, etc. It is necessary to reduce bandwidth costs, improve resource utilization, ensure service 
quality, and support sustainable development of the digital economy through accurate prediction 
and intelligent scheduling. The research objective is to develop a "prediction scheduling 
optimization" full chain intelligent method for data intensive (transmission tasks) and computation 
intensive (computation tasks) tasks, achieving accurate prediction of bandwidth requirements, 
minimization of bandwidth costs for transmission tasks, dynamic offloading of computation tasks 
for multi-objective optimization, and load balancing of heterogeneous resources. The main 
contributions include: proposing a time-frequency domain integrated Transformer model (Fre iTT), 
combining Fourier transform to capture periodic features, and designing a time-frequency domain 
loss function to improve the accuracy of bandwidth demand prediction; Design a hybrid learning 
strategy particle swarm algorithm[1] (HLSPSO) that integrates enhanced median learning, random 
learning, and adaptive strategies to minimize network bandwidth costs in real-time scheduling of 
transmission tasks; Build a decentralized cloud architecture and propose an improved near end 
policy optimization algorithm [2](TOPPO) to jointly optimize energy consumption, latency, and 
load balancing in dynamic offloading of computing tasks; Propose Rainbow LBO deep 
reinforcement learning algorithm, combined with Analytic Hierarchy Process to calculate load 
weights and introduce load accumulation attenuation mechanism, to enhance the load balancing 
ability and system stability of dynamic scheduling of computing tasks in heterogeneous resource 
environments. The overall research forms a complete system through the "prediction scheduling 
optimization" closed-loop, provides theoretical support and technical solutions for edge computing 
network resource management, promotes its implementation and application in industrial intelligent 
networking, AIGC and other scenarios, and helps to transform into an information power 

2. Correlation theory 

2.1 Overview of edge computing Network Task Scheduling and Resource Management 
Optimization 

Edge computing [3]reduces transmission delay, load and energy consumption and improves task 
processing efficiency by executing tasks at edge nodes close to data sources. Its core supporting 
technology is task scheduling, which is responsible for reasonable allocation of computing 
resources to optimize system performance. In delay sensitive scenarios such as real-time video 
analysis and IoT data processing, an edge intelligent scheduling architecture is adopted, utilizing 
artificial intelligence technology to predict task requirements and dynamically optimize resource 
allocation, adapting to environmental changes and task demands, and improving resource utilization 
efficiency. This architecture adopts an "end-to-end" mode, where task requests are directly 
processed at edge nodes or layers without going through a central cloud, reducing transmission 
latency and meeting low latency and high bandwidth requirements. The architecture is divided into 
terminal layer, scheduling layer, and edge layer: the terminal layer generates and submits tasks, and 
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predicts future resource requirements based on historical data; The scheduling layer uses predictive 
information and dynamically adjusts strategies such as deep reinforcement learning and intelligent 
optimization algorithms to balance individual task costs with system load balancing and service 
quality constraints; The edge layer is composed of multiple nodes that perform assigned tasks and 
provide computing, storage, and network support, continuously optimizing policies through 
resource monitoring and feedback mechanisms. Classic architectures include layered, centralized, 
distributed, collaborative, hybrid edge cloud, and intelligent scheduling architectures, each with its 
own advantages and disadvantages, suitable for different scenarios. For example, layered 
architectures are suitable for multi-level processing of complex scenarios, while intelligent 
scheduling architectures are suitable for real-time task scheduling in complex environments. The 
overall research forms a complete system through the "prediction scheduling optimization" closed-
loop, provides theoretical support and technical solutions for edge computing resource management, 
promotes its landing application in industrial intelligent networking, AIGC and other scenarios, and 
improves the stability and flexibility of the system. 

2.2 Theoretical framework for predicting edge resource demand and optimizing task 
scheduling 

Resource demand prediction and task scheduling optimization in edge computing environment 
rely on the integration of deep learning and intelligent optimization technology. In terms of resource 
demand prediction, deep learning (DL) achieves feature extraction and nonlinear mapping through 
multi-layer neural networks: Deep neural networks (DNN) [4] adopt a fully connected structure, 
and their k-th layer output satisfies 

𝑦𝑦(𝑘𝑘) = 𝜎𝜎(𝑊𝑊(𝐾𝐾)𝑦𝑦(𝑘𝑘−1) + 𝑏𝑏(𝑘𝑘)) 

Where σ  is the activation function (such as Sigmoid σ(z) = 1
1+e−z

 or ReLU σ(z) =
max(0, z)); Convolutional neural networks (CNNs) capture spatial correlations through weight 
sharing and convolution operations; Recurrent neural networks (RNNs) introduce memory 
mechanisms to handle temporal dependencies, with their hidden states updated toSt = σ(WSt−1 +
Wxt + b)and outputs Ot = σ(VSt + c). However, there is a gradient vanishing problem, so LSTM 
and GRU are introduced to optimize long-term dependency capture through gating mechanisms; 
Transformer achieves global information focusing through attention mechanism, improving the 
efficiency of long sequence prediction. In terms of task scheduling optimization, intelligent 
optimization algorithms (such as PSO) define optimization objectives (such as minimizing latency 
or energy consumption) through the objective function f (x), combine search space and 
neighborhood structure (such as distance function d (x, x ')) to achieve global search, balance 
exploration and development, and ensure stable optimal solutions through convergence criteria 
(such as ∣ f(Xk+1) − f(XK) ∣< ϵ ). Deep reinforcement learning (DRL) models through Markov 
decision processes (MDP), defining a state space S, an action space A, a state transition probability 
P(Sk+1|St, at), at, and a reward function R. Its goal is to maximize the cumulative returnRt =
∑ γtrtT
t=0 , and evaluate the strategy π through the action value function  Qπ(s,a)=E[Rt∣st=s,at=a] 

and the state value functionVπ(s) = E[Rt ∣ St = s]. Typical algorithms include DQN (Discrete 
Action Space [5]), DPG/DDPG (Continuous Control), and PPO (Policy Gradient Optimization), 
combined with the Actor Critic framework to improve convergence speed and Stability, widely 
used in task scheduling, computation offloading, and load balancing optimization in dynamic 
environments. 
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3. Research method 

3.1 Analysis of edge computing Task Scheduling Optimization Objectives 

In the edge computing environment, the core goal of task scheduling is to comprehensively 
optimize multi-dimensional performance indicators such as delay, bandwidth, energy consumption, 
task success rate and load balancing through efficient allocation of computing resources. Delay 
optimization focuses on reducing task execution delay, involving collaborative design of computing 
resource allocation, network transmission rate, and scheduling strategies to meet users' demand for 
fast response; Bandwidth optimization aims to improve data transmission efficiency, reduce 
congestion through rational allocation of network resources, and ensure the supply of high 
bandwidth services; Energy optimization focuses on balancing computing and transmission energy 
consumption, especially on resource constrained edge nodes. It requires task scheduling to reduce 
overall energy consumption, extend device endurance, and improve energy utilization efficiency; 
The success rate of tasks, as a key indicator of system stability, needs to be improved by avoiding 
resource competition and task failure, ensuring that tasks are completed within the specified time, 
and thereby enhancing service quality and user experience; Load balancing distributes task loads to 
different edge nodes to prevent local overload, improve system throughput and resource utilization, 
and ultimately achieve optimal overall system performance. These goals are interrelated and need to 
be considered through a multi-objective optimization model to adapt to the dynamic and 
heterogeneous environment characteristics of edge computing. 

3.2 Edge Network Bandwidth Resource Demand Prediction Method and Framework 

In the edge computing environment, accurate prediction of bandwidth resource demand is the 
core prerequisite for ensuring quality of service, optimizing resource allocation and reducing system 
costs. Although traditional time-domain analysis methods can reflect bandwidth trends, they are 
difficult to capture complex spatiotemporal features and frequency changes, resulting in limited 
prediction accuracy; Although the Transformer model excels in modeling long-term and short-term 
dependencies, it has limitations in capturing high-frequency features in high dynamic network 
environments. To this end, a prediction method based on time-frequency domain integrated 
Transformer (Fre iTT) is proposed, which integrates frequency domain and time domain features. 
Through the powerful modeling ability of Transformer, the spatiotemporal dependency relationship 
of bandwidth data is deeply explored to improve prediction accuracy. The prediction framework 
consists of four steps: first, collect real traffic data covering different time periods, network 
environments, and user behaviors to enhance the model's generalization ability; Next, data 
preprocessing is performed by normalizing the eigenvalues to the [0,1] interval using maximum 
minimum normalization to eliminate dimensional differences; Subsequently, a Fre iTT model was 
constructed, in which the encoder extracts global temporal dependencies through a multi head 
attention mechanism, and the decoder combines a frequency domain enhancement module to 
capture periodic changes, achieving encoding decoding collaborative prediction; Finally, the model 
parameters are optimized through training to minimize the error between the predicted values and 
the true values. The bandwidth demand exhibits significant spatiotemporal characteristics: in the 
time dimension, data fluctuates periodically on a daily basis, and there are dynamic changes such as 
noon and evening peaks; In terms of spatial dimension, there is a correlation between neighboring 
nodes due to task load transfer (such as when there is a surge in Beijing users, requests to transfer to 
Hebei nodes lead to an increase in their bandwidth demand). This method provides reliable data 
support and decision-making basis for edge computing resource elastic allocation and task 
collaborative scheduling. 
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3.3 Fre iTT edge bandwidth prediction method 

The Fre-iTT model is proposed to address the complex space-time dependence and dynamic 
fluctuation characteristics of bandwidth demand forecasting in edge computing. This model uses a 
time-frequency domain integration module to convert time-domain bandwidth signals into 
frequency-domain signals using Real Fast Fourier Transform (RFFT)[6], capturing periodic trends, 
and injecting temporal position information through Padding and Embedding layers to achieve 
spatiotemporal feature fusion. The Transformer module adopts a multi head attention mechanism 
and feedforward neural network. The encoder extracts global time dependencies, and the decoder 
generates future bandwidth predictions. To optimize prediction accuracy, an improved loss function 
strategy is designed: the time-domain loss measures the difference between the predicted value and 
the true value through mean square error, while the frequency-domain loss calculates the 
comprehensive error between the real and imaginary parts. The two are dynamically weighted using 
cosine decay weight hyperparameters. In the early stage of training, emphasis is placed on time-
domain convergence speed, and in the later stage, frequency-domain accuracy improvement is 
strengthened. This model effectively integrates the characteristics of time-domain continuity and 
frequency-domain periodicity, significantly improves the accuracy of bandwidth demand prediction 
in a highly dynamic environment, and provides key data support for edge computing resource 
allocation and task scheduling. 

4. Results and discussion 

4.1 Experimental results and analysis of edge bandwidth demand prediction 

Table 1 Performance Comparison of Loss Function Optimization 

Region Loss Function Type MAE RMSE MAPE R² 

Region 1 Baseline MSE 30.460 42.150 0.079 0.997 

Region 1 Time-Frequency Integrated 6.283 11.135 0.015 0.999 

Region 2 Baseline MSE 25.690 33.950 0.017 0.998 

Region 2 Time-Frequency Integrated 5.183 7.705 0.004 0.999 

Region 3 Baseline MSE 77.685 121.280 0.015 0.998 

Region 3 Time-Frequency Integrated 27.560 33.420 0.008 0.999 

 
This study is based on a real network bandwidth demand dataset, and conducts comparative 

experiments in three geographical regions to verify the performance of the model by integrating the 
time-frequency domain Transformer (Fre iTT) model with seven mainstream prediction methods 
(LSTM, GRU, TFT, Informer, FEDformer, PatchTST, iTransformer). The experiment adopts an 
8:2:0.1 training test validation set partitioning, and the data is normalized to the [0,1] interval 
through maximum minimum normalization. The hyperparameter settings include an initial learning 
rate of 1e-3, batch size of 64, training period of 300, number of attention heads of 4, and segmented 
exponential decay learning rate strategy. MAE, RMSE, MAPE, and R ² Score are selected as 
evaluation indicators to comprehensively measure prediction accuracy and stability. The 
experimental results showed that Fre iTT performed the best in all three geographical regions: the 
MAE, RMSE, and MAPE of Region 1 reached 6.283, 11.135, and 0.015, respectively, with an R ² 
Score of 0.999; The MAE and RMSE of Region 2 are 5.183 and 7.705, respectively; The MAE and 
RMSE of Region 3 are 19.949 and 33.42, respectively. Compared to iTransformer, the MAE, 
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RMSE, and MAPE of Fre-iTT in Region 1 decreased by 4.46%, 8.27%, and 16.67%, respectively; 
Compared with PatchTST, the MAE of Region 1 decreased by 40.7%. The time-frequency domain 
integrated loss function optimization strategy further improved the model performance: after using 
this loss function, the MAE of region 1 decreased from 30.46 to 6.283, a decrease of 79.37%; The 
MAE of Region 2 decreased from 25.69 to 5.183, a decrease of 79.82%. As shown in Table 1 

4.2 Model experiment 

In the edge computing scenario, AI content generation (AIGC) tasks, as typical computing 
intensive tasks, are widely used in smart homes, smart factories, intelligent transportation and other 
fields. With the soaring demand for AIGC services, how to achieve efficient task scheduling in the 
edge computing environment has become a key challenge. The current method faces problems such 
as unstable decision-making, easy resource overload, and single optimization objectives, making it 
difficult to simultaneously meet multi-objective requirements such as low latency, low energy 
consumption, and load balancing. To this end, the research proposes a decentralized cloud task 
offloading architecture (AIECOF) [7]. By giving Internet of Things devices self-learning and 
independent decision-making capabilities, it enhances the intelligent collaboration level of edge 
computing and reduces data long-distance transmission delay to optimize AIGC service quality. 
Under this architecture, a multi-objective joint optimization problem for computing task offloading 
is defined, and an improved deep reinforcement learning algorithm (TOPPO) is introduced to 
dynamically update offloading strategies through model environment interaction, ensuring efficient 
execution of computationally intensive tasks on local devices or edge servers. The specific 
modeling covers terminal layer latency and energy consumption load models, transmission queue 
task latency and energy consumption models, edge layer latency and energy consumption models, 
as well as mathematical expressions of resource optimization problems. The goal is to 
synchronously reduce task processing latency, system energy consumption, and load variance 
without exceeding the maximum tolerance time of tasks, reduce the number of task offloading 
failures, and achieve multi-objective joint optimization. 

4.3 Effect analysis 

In the edge computing scenario, AI content generation (AIGC) tasks, as typical computing 
intensive tasks, are widely used in smart homes, smart factories, intelligent transportation and other 
fields. With the soaring demand for AIGC services, how to achieve efficient task scheduling in the 
edge computing environment has become a key challenge. The current method faces problems such 
as unstable decision-making, easy resource overload, and single optimization objectives, making it 
difficult to simultaneously meet multi-objective requirements such as low latency, low energy 
consumption, and load balancing. To this end, research proposes a decentralized cloud task 
offloading architecture (AIECOF), which enhances the intelligent collaboration level of edge 
computing and reduces the delay of data long-distance transmission to optimize the quality of 
service of AIGC by endowing IoT devices with self-learning and independent decision-making 
capabilities. Under this architecture, a multi-objective joint optimization problem for computing 
task offloading is defined, and an improved deep reinforcement learning algorithm (TOPPO) is 
introduced to dynamically update offloading strategies through model environment interaction, 
ensuring efficient execution of computationally intensive tasks on local devices or edge servers. The 
TOPPO algorithm combines the efficient policy optimization of PPO with the temporal dependency 
processing capability of GRU, and introduces GRU to capture the long and short-term dependencies 
between task states and environmental changes in policy networks and value networks. At the same 
time, it improves training stability and reduces policy fluctuations through policy update step size 
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limitations and pruning mechanisms. Experiments have shown that TOPPO outperforms traditional 
polling methods, random methods, and similar deep reinforcement learning algorithms (such as 
DQN, Double DQN, D3QN, AC, A2C, etc.) in terms of energy consumption, latency, task failure 
rate, and load balancing under different numbers of smart devices, edge server computing power, 
and task load scenarios. The reward value increases by 8.36% -100%, the convergence speed is 
faster, and the dependence on device computing power is low, demonstrating excellent adaptability 
and robustness. The specific performance comparison is shown in Table 2 

Table 2  Performance Comparison of Different Algorithms for AIGC Task Offloading 

Algorithm Type Algorithm Reward Latency Energy Consumption Task Failure Rate Load 

Traditional Round 
Robin 0.781 3869.83 0.1600 0.1248 0.2874 

Traditional Random 0.830 4118.00 0.1627 0.1138 5.7723 

Deep RL DQN 0.3373 1404.67 0.0707 0.7370 193.73 

Deep RL Double 
DQN 0.2973 1196.33 0.0727 0.7459 189.39 

Deep RL Dueling 
DQN 0.2851 1120.17 0.0747 0.7375 192.12 

Deep RL D3QN 0.4007 1744.00 0.0833 0.6510 171.43 

Deep RL AC 0.2786 1031.17 0.0743 0.7400 182.08 

Deep RL A2C 0.2758 1032.00 0.0777 0.7230 189.05 

Deep RL TOPPO 0.2649 984.17 0.0627 0.7925 205.99 

 
Covering architecture diagrams, convergence analysis, energy consumption/latency/task failure 

rate comparison, CPU utilization optimization, and multi scenario robustness verification, the 
effectiveness and practicality of the method in dynamic environments have been verified. In the 
integration scenario of edge computing and the Internet of Things, efficient scheduling of 
computing intensive tasks needs to address the challenges of resource allocation, load balancing and 
delay optimization of heterogeneous servers. A task scheduling system model was developed, 
which includes four types of heterogeneous edge servers: ordinary, computing, memory, and I/O. 
Tasks are defined by arrival time, resource requirements (CPU, memory, I/O), and deadline. Server 
attributes cover processing speed, real-time load, type, and resource quantity. Load assessment uses 
Analytic Hierarchy Process to determine weight coefficients, combined with real-time load 
quantification of the impact of performance loss on server speed; The latency model divides task 
execution into waiting time (dependent on queue length and resource competition) and execution 
time (determined by the real-time processing speed of the server). The optimization objective 
focuses on the difference between task success rate and load imbalance, with the constraint that the 
response time does not exceed the deadline. In response to dynamic scheduling requirements, the 
Rainbow LBO algorithm is proposed, which integrates adversarial networks (separating state value 
and action advantage), noise networks (adaptive exploration to enhance robustness), dual Q-
learning [8] (alleviating overestimation), and priority experience replay (sampling based on effect 
priority to improve data efficiency). The optimal scheduling strategy is learned through iterative 
training through environmental interaction. The simulation experiment uses A100 graphics card and 
Linux server, based on Python 3.10 and PyTorch framework, to simulate the processing of 2000 
tasks on 10-16 heterogeneous servers. The parameter settings include training cycle of 300, hidden 
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layer of 128 neurons, learning rate of 5e-4, etc. The results show that the algorithm outperforms 
traditional and classic DRL algorithms in terms of reward value, task response time, and load 
imbalance. It also performs stably without outliers under different task arrival rates, load thresholds, 
and server types, verifying its high stability and robustness. It is suitable for high real-time 
scenarios such as smart homes and smart factories. 

5. Conclusion 

This research focuses on edge computing network resource demand prediction and task 
scheduling optimization. Aiming at the four major problems of difficult bandwidth demand 
prediction, high overhead of transmission task scheduling, complex computing task unloading 
decisions, and unbalanced edge server load, four innovative methods are proposed: bandwidth 
prediction uses time-frequency domain integrated Transformer model, captures periodic 
characteristics through Fourier transform and combines the time-space dependency of Transformer 
modeling, reducing MAE and RMSE by 4.46%~88.39%; The optimization of transmission task 
scheduling is achieved through the HLSPSO algorithm with a hybrid learning strategy, which 
combines enhanced median learning and random learning speed update strategies to achieve the 
minimum bandwidth cost optimal scheduling while satisfying QoS constraints and service provider 
bandwidth allocation limitations; The computation task offloading adopts an improved TOPPO 
deep reinforcement learning algorithm, which enhances the temporal feature processing capability 
using GRU and introduces a policy pruning mechanism. Compared with six DRL algorithms, it 
improves energy consumption, latency, task success rate, and load comprehensive rewards by 8.36% 
to 21.75%, saves energy consumption by 12.14% to 76.10%, and reduces latency by 3.96% to 
68.09%; Load balancing defines four types of heterogeneous edge servers using the Rainbow LBO 
method and constructs an MDP model [9]. The DRL algorithm is improved by integrating 
adversarial and noisy networks, reducing load imbalance by 3.10% to 23.43%. The task response 
time, success rate, and balance performance are superior. The results have been applied to practical 
scheduling systems, providing new theoretical support and technical solutions for resource 
management. With the popularization of 5G/6G and the proliferation of IoT devices, it is necessary 
to explore cross layer resource collaborative optimization in the future to dynamically adjust cloud 
edge end task offloading and resource allocation; Study the spatiotemporal dynamic adaptability of 
task scheduling, using adaptive evolutionary algorithms [10] or meta reinforcement learning to 
quickly adapt to dynamic environments; Federal learning and differential privacy are introduced to 
optimize scheduling policies while protecting user data privacy, improve system security and 
scalability, promote edge computing to develop in a more intelligent, efficient and secure direction, 
and meet the needs of complex scenarios such as smart cities and intelligent manufacturing. 
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