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Abstract: With the development of the Internet of Things, 5G/6G, artificial intelligence and
distributed computing technology, edge computing has become a core service paradigm
with its advantages of low latency and high bandwidth. However, it faces challenges such
as task explosion, heterogeneous resources, and uneven geographical distribution, resulting
in insufficient bandwidth prediction accuracy, high scheduling costs, difficulty in
unloading decisions, and load imbalance. Existing research has limitations in multi-scale
feature capture, multi-objective optimization, and heterogeneous resource adaptation. This
study constructs a full chain intelligent optimization framework: the Fre iTT model is used
to capture the periodic characteristics of bandwidth and fuse spatiotemporal dependencies,
reducing temporal prediction errors by 4.46% to 88.39%; Design HLSPSO algorithm to
optimize the bandwidth cost of transmission tasks; By jointly optimizing the energy
consumption, latency, and load balancing of computing tasks through TOPPO algorithm,
the performance is improved by 8.36% to 21.75% compared to six DRL algorithms;
Develop Rainbow LBO algorithm to reduce load imbalance by 3.10% to 23.43%. The
results have been applied to actual systems, promoting the implementation of edge
computing in industrial intelligent networks, AIGC and other scenarios. In the future, it is
necessary to explore cross layer resource collaboration, spatio-temporal adaptation of task
scheduling, and federated learning privacy protection to promote edge computing to be
more intelligent, efficient, and secure.

1. Introduction

With the rapid development of the Internet of Things, 5G/6G, artificial intelligence and
distributed computing technology, edge computing, as a new computing paradigm, realizes low
latency and high bandwidth service supply through the "terminal edge server" two-tier architecture,
and becomes the core technology supporting major projects. However, the edge computing network
is faced with the challenges of user task explosion, strong resource heterogeneity, and uneven
geographical distribution, resulting in insufficient accuracy of bandwidth demand prediction, high
cost of task scheduling, difficulty in unloading decisions, and unbalanced load. It is urgent to
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achieve accurate resource demand prediction and task scheduling optimization through artificial
intelligence technology. The existing research has the following shortcomings: in terms of
bandwidth demand prediction, traditional time-domain models are difficult to capture multi-scale
features and frequency changes, and the prediction accuracy is insufficient; Task scheduling
optimization ignores bandwidth costs and uneven geographic distribution, resulting in idealized
scheduling strategies; The unloading of computing tasks often adopts single objective optimization
(such as latency or energy consumption), ignoring the need for multi-objective joint optimization;
Heterogeneous resource load balancing does not fully consider the performance bottlenecks and
load accumulation effects caused by server heterogeneity. The research motivation stems from
practical scenario requirements, such as real-time video analysis, AIGC tasks, industrial Internet of
Things, etc. It is necessary to reduce bandwidth costs, improve resource utilization, ensure service
quality, and support sustainable development of the digital economy through accurate prediction
and intelligent scheduling. The research objective is to develop a "prediction scheduling
optimization™ full chain intelligent method for data intensive (transmission tasks) and computation
intensive (computation tasks) tasks, achieving accurate prediction of bandwidth requirements,
minimization of bandwidth costs for transmission tasks, dynamic offloading of computation tasks
for multi-objective optimization, and load balancing of heterogeneous resources. The main
contributions include: proposing a time-frequency domain integrated Transformer model (Fre iTT),
combining Fourier transform to capture periodic features, and designing a time-frequency domain
loss function to improve the accuracy of bandwidth demand prediction; Design a hybrid learning
strategy particle swarm algorithm[1] (HLSPSO) that integrates enhanced median learning, random
learning, and adaptive strategies to minimize network bandwidth costs in real-time scheduling of
transmission tasks; Build a decentralized cloud architecture and propose an improved near end
policy optimization algorithm [2](TOPPO) to jointly optimize energy consumption, latency, and
load balancing in dynamic offloading of computing tasks; Propose Rainbow LBO deep
reinforcement learning algorithm, combined with Analytic Hierarchy Process to calculate load
weights and introduce load accumulation attenuation mechanism, to enhance the load balancing
ability and system stability of dynamic scheduling of computing tasks in heterogeneous resource
environments. The overall research forms a complete system through the "prediction scheduling
optimization™ closed-loop, provides theoretical support and technical solutions for edge computing
network resource management, promotes its implementation and application in industrial intelligent
networking, AIGC and other scenarios, and helps to transform into an information power

2. Correlation theory

2.1 Overview of edge computing Network Task Scheduling and Resource Management
Optimization

Edge computing [3]reduces transmission delay, load and energy consumption and improves task
processing efficiency by executing tasks at edge nodes close to data sources. Its core supporting
technology is task scheduling, which is responsible for reasonable allocation of computing
resources to optimize system performance. In delay sensitive scenarios such as real-time video
analysis and loT data processing, an edge intelligent scheduling architecture is adopted, utilizing
artificial intelligence technology to predict task requirements and dynamically optimize resource
allocation, adapting to environmental changes and task demands, and improving resource utilization
efficiency. This architecture adopts an "end-to-end” mode, where task requests are directly
processed at edge nodes or layers without going through a central cloud, reducing transmission
latency and meeting low latency and high bandwidth requirements. The architecture is divided into
terminal layer, scheduling layer, and edge layer: the terminal layer generates and submits tasks, and
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predicts future resource requirements based on historical data; The scheduling layer uses predictive
information and dynamically adjusts strategies such as deep reinforcement learning and intelligent
optimization algorithms to balance individual task costs with system load balancing and service
quality constraints; The edge layer is composed of multiple nodes that perform assigned tasks and
provide computing, storage, and network support, continuously optimizing policies through
resource monitoring and feedback mechanisms. Classic architectures include layered, centralized,
distributed, collaborative, hybrid edge cloud, and intelligent scheduling architectures, each with its
own advantages and disadvantages, suitable for different scenarios. For example, layered
architectures are suitable for multi-level processing of complex scenarios, while intelligent
scheduling architectures are suitable for real-time task scheduling in complex environments. The
overall research forms a complete system through the "prediction scheduling optimization™” closed-
loop, provides theoretical support and technical solutions for edge computing resource management,
promotes its landing application in industrial intelligent networking, AIGC and other scenarios, and
improves the stability and flexibility of the system.

2.2 Theoretical framework for predicting edge resource demand and optimizing task
scheduling

Resource demand prediction and task scheduling optimization in edge computing environment
rely on the integration of deep learning and intelligent optimization technology. In terms of resource
demand prediction, deep learning (DL) achieves feature extraction and nonlinear mapping through
multi-layer neural networks: Deep neural networks (DNN) [4] adopt a fully connected structure,
and their k-th layer output satisfies

y® = W Ey k1) 4 pk))

Where o is the activation function (such as Sigmoid o (z) = —= Of ReLU o (2) =

max(0,z)); Convolutional neural networks (CNNs) capture spatial correlations through weight
sharing and convolution operations; Recurrent neural networks (RNNSs) introduce memory
mechanisms to handle temporal dependencies, with their hidden states updated toS, = o (Ws,_, +
W, + b)and outputs O = o (Vs + c). However, there is a gradient vanishing problem, so LSTM
and GRU are introduced to optimize long-term dependency capture through gating mechanisms;
Transformer achieves global information focusing through attention mechanism, improving the
efficiency of long sequence prediction. In terms of task scheduling optimization, intelligent
optimization algorithms (such as PSO) define optimization objectives (such as minimizing latency
or energy consumption) through the objective function f (x), combine search space and
neighborhood structure (such as distance function d (x, x ")) to achieve global search, balance
exploration and development, and ensure stable optimal solutions through convergence criteria
(such as | f(Xx4+1) — f(Xk) I< €). Deep reinforcement learning (DRL) models through Markov
decision processes (MDP), defining a state space S, an action space A, a state transition probability
P(Sx+11St,a), at, and a reward function R. Its goal is to maximize the cumulative returnR, =
Y, y're, and evaluate the strategy = through the action value function Q = (s,a)=E[Rt | st=s,at=a]
and the state value functionV™(s) = E[R; | S; = s]. Typical algorithms include DQN (Discrete
Action Space [5]), DPG/DDPG (Continuous Control), and PPO (Policy Gradient Optimization),
combined with the Actor Critic framework to improve convergence speed and Stability, widely
used in task scheduling, computation offloading, and load balancing optimization in dynamic
environments.
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3. Research method
3.1 Analysis of edge computing Task Scheduling Optimization Objectives

In the edge computing environment, the core goal of task scheduling is to comprehensively
optimize multi-dimensional performance indicators such as delay, bandwidth, energy consumption,
task success rate and load balancing through efficient allocation of computing resources. Delay
optimization focuses on reducing task execution delay, involving collaborative design of computing
resource allocation, network transmission rate, and scheduling strategies to meet users' demand for
fast response; Bandwidth optimization aims to improve data transmission efficiency, reduce
congestion through rational allocation of network resources, and ensure the supply of high
bandwidth services; Energy optimization focuses on balancing computing and transmission energy
consumption, especially on resource constrained edge nodes. It requires task scheduling to reduce
overall energy consumption, extend device endurance, and improve energy utilization efficiency;
The success rate of tasks, as a key indicator of system stability, needs to be improved by avoiding
resource competition and task failure, ensuring that tasks are completed within the specified time,
and thereby enhancing service quality and user experience; Load balancing distributes task loads to
different edge nodes to prevent local overload, improve system throughput and resource utilization,
and ultimately achieve optimal overall system performance. These goals are interrelated and need to
be considered through a multi-objective optimization model to adapt to the dynamic and
heterogeneous environment characteristics of edge computing.

3.2 Edge Network Bandwidth Resource Demand Prediction Method and Framework

In the edge computing environment, accurate prediction of bandwidth resource demand is the
core prerequisite for ensuring quality of service, optimizing resource allocation and reducing system
costs. Although traditional time-domain analysis methods can reflect bandwidth trends, they are
difficult to capture complex spatiotemporal features and frequency changes, resulting in limited
prediction accuracy; Although the Transformer model excels in modeling long-term and short-term
dependencies, it has limitations in capturing high-frequency features in high dynamic network
environments. To this end, a prediction method based on time-frequency domain integrated
Transformer (Fre iTT) is proposed, which integrates frequency domain and time domain features.
Through the powerful modeling ability of Transformer, the spatiotemporal dependency relationship
of bandwidth data is deeply explored to improve prediction accuracy. The prediction framework
consists of four steps: first, collect real traffic data covering different time periods, network
environments, and user behaviors to enhance the model's generalization ability; Next, data
preprocessing is performed by normalizing the eigenvalues to the [0,1] interval using maximum
minimum normalization to eliminate dimensional differences; Subsequently, a Fre iTT model was
constructed, in which the encoder extracts global temporal dependencies through a multi head
attention mechanism, and the decoder combines a frequency domain enhancement module to
capture periodic changes, achieving encoding decoding collaborative prediction; Finally, the model
parameters are optimized through training to minimize the error between the predicted values and
the true values. The bandwidth demand exhibits significant spatiotemporal characteristics: in the
time dimension, data fluctuates periodically on a daily basis, and there are dynamic changes such as
noon and evening peaks; In terms of spatial dimension, there is a correlation between neighboring
nodes due to task load transfer (such as when there is a surge in Beijing users, requests to transfer to
Hebei nodes lead to an increase in their bandwidth demand). This method provides reliable data
support and decision-making basis for edge computing resource elastic allocation and task
collaborative scheduling.
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3.3 Fre iTT edge bandwidth prediction method

The Fre-iTT model is proposed to address the complex space-time dependence and dynamic
fluctuation characteristics of bandwidth demand forecasting in edge computing. This model uses a
time-frequency domain integration module to convert time-domain bandwidth signals into
frequency-domain signals using Real Fast Fourier Transform (RFFT)[6], capturing periodic trends,
and injecting temporal position information through Padding and Embedding layers to achieve
spatiotemporal feature fusion. The Transformer module adopts a multi head attention mechanism
and feedforward neural network. The encoder extracts global time dependencies, and the decoder
generates future bandwidth predictions. To optimize prediction accuracy, an improved loss function
strategy is designed: the time-domain loss measures the difference between the predicted value and
the true value through mean square error, while the frequency-domain loss calculates the
comprehensive error between the real and imaginary parts. The two are dynamically weighted using
cosine decay weight hyperparameters. In the early stage of training, emphasis is placed on time-
domain convergence speed, and in the later stage, frequency-domain accuracy improvement is
strengthened. This model effectively integrates the characteristics of time-domain continuity and
frequency-domain periodicity, significantly improves the accuracy of bandwidth demand prediction
in a highly dynamic environment, and provides key data support for edge computing resource
allocation and task scheduling.

4. Results and discussion
4.1 Experimental results and analysis of edge bandwidth demand prediction

Table 1 Performance Comparison of Loss Function Optimization

Region Loss Function Type MAE RMSE MAPE R?
Region 1 Baseline MSE 30.460 42.150 0.079 0.997
Region 1 Time-Frequency Integrated 6.283 11.135 0.015 0.999
Region 2 Baseline MSE 25.690 33.950 0.017 0.998
Region 2 Time-Frequency Integrated 5.183 7.705 0.004 0.999
Region 3 Baseline MSE 77.685 121.280 0.015 0.998
Region 3 Time-Frequency Integrated 27.560 33.420 0.008 0.999

This study is based on a real network bandwidth demand dataset, and conducts comparative
experiments in three geographical regions to verify the performance of the model by integrating the
time-frequency domain Transformer (Fre iTT) model with seven mainstream prediction methods
(LSTM, GRU, TFT, Informer, FEDformer, PatchTST, iTransformer). The experiment adopts an
8:2:0.1 training test validation set partitioning, and the data is normalized to the [0,1] interval
through maximum minimum normalization. The hyperparameter settings include an initial learning
rate of 1le-3, batch size of 64, training period of 300, number of attention heads of 4, and segmented
exponential decay learning rate strategy. MAE, RMSE, MAPE, and R * Score are selected as
evaluation indicators to comprehensively measure prediction accuracy and stability. The
experimental results showed that Fre iTT performed the best in all three geographical regions: the
MAE, RMSE, and MAPE of Region 1 reached 6.283, 11.135, and 0.015, respectively, with an R 2
Score of 0.999; The MAE and RMSE of Region 2 are 5.183 and 7.705, respectively; The MAE and
RMSE of Region 3 are 19.949 and 33.42, respectively. Compared to iTransformer, the MAE,
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RMSE, and MAPE of Fre-iTT in Region 1 decreased by 4.46%, 8.27%, and 16.67%, respectively;
Compared with PatchTST, the MAE of Region 1 decreased by 40.7%. The time-frequency domain
integrated loss function optimization strategy further improved the model performance: after using
this loss function, the MAE of region 1 decreased from 30.46 to 6.283, a decrease of 79.37%; The
MAE of Region 2 decreased from 25.69 to 5.183, a decrease of 79.82%. As shown in Table 1

4.2 Model experiment

In the edge computing scenario, Al content generation (AIGC) tasks, as typical computing
intensive tasks, are widely used in smart homes, smart factories, intelligent transportation and other
fields. With the soaring demand for AIGC services, how to achieve efficient task scheduling in the
edge computing environment has become a key challenge. The current method faces problems such
as unstable decision-making, easy resource overload, and single optimization objectives, making it
difficult to simultaneously meet multi-objective requirements such as low latency, low energy
consumption, and load balancing. To this end, the research proposes a decentralized cloud task
offloading architecture (AIECOF) [7]. By giving Internet of Things devices self-learning and
independent decision-making capabilities, it enhances the intelligent collaboration level of edge
computing and reduces data long-distance transmission delay to optimize AIGC service quality.
Under this architecture, a multi-objective joint optimization problem for computing task offloading
is defined, and an improved deep reinforcement learning algorithm (TOPPO) is introduced to
dynamically update offloading strategies through model environment interaction, ensuring efficient
execution of computationally intensive tasks on local devices or edge servers. The specific
modeling covers terminal layer latency and energy consumption load models, transmission queue
task latency and energy consumption models, edge layer latency and energy consumption models,
as well as mathematical expressions of resource optimization problems. The goal is to
synchronously reduce task processing latency, system energy consumption, and load variance
without exceeding the maximum tolerance time of tasks, reduce the number of task offloading
failures, and achieve multi-objective joint optimization.

4.3 Effect analysis

In the edge computing scenario, Al content generation (AIGC) tasks, as typical computing
intensive tasks, are widely used in smart homes, smart factories, intelligent transportation and other
fields. With the soaring demand for AIGC services, how to achieve efficient task scheduling in the
edge computing environment has become a key challenge. The current method faces problems such
as unstable decision-making, easy resource overload, and single optimization objectives, making it
difficult to simultaneously meet multi-objective requirements such as low latency, low energy
consumption, and load balancing. To this end, research proposes a decentralized cloud task
offloading architecture (AIECOF), which enhances the intelligent collaboration level of edge
computing and reduces the delay of data long-distance transmission to optimize the quality of
service of AIGC by endowing loT devices with self-learning and independent decision-making
capabilities. Under this architecture, a multi-objective joint optimization problem for computing
task offloading is defined, and an improved deep reinforcement learning algorithm (TOPPO) is
introduced to dynamically update offloading strategies through model environment interaction,
ensuring efficient execution of computationally intensive tasks on local devices or edge servers. The
TOPPO algorithm combines the efficient policy optimization of PPO with the temporal dependency
processing capability of GRU, and introduces GRU to capture the long and short-term dependencies
between task states and environmental changes in policy networks and value networks. At the same
time, it improves training stability and reduces policy fluctuations through policy update step size
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limitations and pruning mechanisms. Experiments have shown that TOPPO outperforms traditional
polling methods, random methods, and similar deep reinforcement learning algorithms (such as
DQN, Double DQN, D3QN, AC, A2C, etc.) in terms of energy consumption, latency, task failure
rate, and load balancing under different numbers of smart devices, edge server computing power,
and task load scenarios. The reward value increases by 8.36% -100%, the convergence speed is
faster, and the dependence on device computing power is low, demonstrating excellent adaptability
and robustness. The specific performance comparison is shown in Table 2

Table 2 Performance Comparison of Different Algorithms for AIGC Task Offloading

Algorithm Type  Algorithm Reward Latency  Energy Consumption  Task Failure Rate Load

Round

Traditional b 0781  3869.83 0.1600 0.1248 0.2874
Traditional Random  0.830  4118.00 0.1627 0.1138 5.7723
Deep RL DON 03373 1404.67 0.0707 0.7370 193.73
Deep RL D[;’gbl\'le 02973  1196.33 0.0727 0.7459 189.39
Deep RL Dgg",{l‘g 02851  1120.17 0.0747 0.7375 192.12
Deep RL D3QN 0.4007  1744.00 0.0833 0.6510 171.43
Deep RL AC 02786  1031.17 0.0743 0.7400 182.08
Deep RL A2C 02758  1032.00 0.0777 0.7230 189.05
Deep RL TOPPO 02649  984.17 0.0627 0.7925 205.99

Covering architecture diagrams, convergence analysis, energy consumption/latency/task failure
rate comparison, CPU utilization optimization, and multi scenario robustness verification, the
effectiveness and practicality of the method in dynamic environments have been verified. In the
integration scenario of edge computing and the Internet of Things, efficient scheduling of
computing intensive tasks needs to address the challenges of resource allocation, load balancing and
delay optimization of heterogeneous servers. A task scheduling system model was developed,
which includes four types of heterogeneous edge servers: ordinary, computing, memory, and 1/O.
Tasks are defined by arrival time, resource requirements (CPU, memory, 1/0), and deadline. Server
attributes cover processing speed, real-time load, type, and resource quantity. Load assessment uses
Analytic Hierarchy Process to determine weight coefficients, combined with real-time load
guantification of the impact of performance loss on server speed; The latency model divides task
execution into waiting time (dependent on queue length and resource competition) and execution
time (determined by the real-time processing speed of the server). The optimization objective
focuses on the difference between task success rate and load imbalance, with the constraint that the
response time does not exceed the deadline. In response to dynamic scheduling requirements, the
Rainbow LBO algorithm is proposed, which integrates adversarial networks (separating state value
and action advantage), noise networks (adaptive exploration to enhance robustness), dual Q-
learning [8] (alleviating overestimation), and priority experience replay (sampling based on effect
priority to improve data efficiency). The optimal scheduling strategy is learned through iterative
training through environmental interaction. The simulation experiment uses A100 graphics card and
Linux server, based on Python 3.10 and PyTorch framework, to simulate the processing of 2000
tasks on 10-16 heterogeneous servers. The parameter settings include training cycle of 300, hidden
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layer of 128 neurons, learning rate of 5e-4, etc. The results show that the algorithm outperforms
traditional and classic DRL algorithms in terms of reward value, task response time, and load
imbalance. It also performs stably without outliers under different task arrival rates, load thresholds,
and server types, verifying its high stability and robustness. It is suitable for high real-time
scenarios such as smart homes and smart factories.

5. Conclusion

This research focuses on edge computing network resource demand prediction and task
scheduling optimization. Aiming at the four major problems of difficult bandwidth demand
prediction, high overhead of transmission task scheduling, complex computing task unloading
decisions, and unbalanced edge server load, four innovative methods are proposed: bandwidth
prediction uses time-frequency domain integrated Transformer model, captures periodic
characteristics through Fourier transform and combines the time-space dependency of Transformer
modeling, reducing MAE and RMSE by 4.46%~88.39%; The optimization of transmission task
scheduling is achieved through the HLSPSO algorithm with a hybrid learning strategy, which
combines enhanced median learning and random learning speed update strategies to achieve the
minimum bandwidth cost optimal scheduling while satisfying QoS constraints and service provider
bandwidth allocation limitations; The computation task offloading adopts an improved TOPPO
deep reinforcement learning algorithm, which enhances the temporal feature processing capability
using GRU and introduces a policy pruning mechanism. Compared with six DRL algorithms, it
improves energy consumption, latency, task success rate, and load comprehensive rewards by 8.36%
to 21.75%, saves energy consumption by 12.14% to 76.10%, and reduces latency by 3.96% to
68.09%; Load balancing defines four types of heterogeneous edge servers using the Rainbow LBO
method and constructs an MDP model [9]. The DRL algorithm is improved by integrating
adversarial and noisy networks, reducing load imbalance by 3.10% to 23.43%. The task response
time, success rate, and balance performance are superior. The results have been applied to practical
scheduling systems, providing new theoretical support and technical solutions for resource
management. With the popularization of 5G/6G and the proliferation of 10T devices, it is necessary
to explore cross layer resource collaborative optimization in the future to dynamically adjust cloud
edge end task offloading and resource allocation; Study the spatiotemporal dynamic adaptability of
task scheduling, using adaptive evolutionary algorithms [10] or meta reinforcement learning to
quickly adapt to dynamic environments; Federal learning and differential privacy are introduced to
optimize scheduling policies while protecting user data privacy, improve system security and
scalability, promote edge computing to develop in a more intelligent, efficient and secure direction,
and meet the needs of complex scenarios such as smart cities and intelligent manufacturing.
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