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Abstract: Current medical evaluations of athletes' core muscle groups lack sufficient 

quantification. This study employs an improved U-Net architecture to automatically 

segment core muscle groups in abdominal and lower back CT images of athletes and 

extracts morphological parameters such as cross-sectional area, muscle density, and fat 

infiltration rate. Furthermore, by fusing CT morphological parameters with surface 

electromyography (sEMG) signals, a Long Short-Term Memory (LSTM) network is 

utilized to predict the core stability index. The system achieves Dice coefficients for 

automatic segmentation of five types of core muscle groups ranging between 0.84 and 0.92. 

The AI detection of fat infiltration rate is highly correlated with the pathological gold 

standard (correlation coefficient 0.976). The root mean square error (RMSE) of the core 

strength prediction model across five test movements ranges from 0.6 to 1.8, providing a 

reliable tool for sports injury prevention and training optimization. 

1. Introduction 

With the increasing demands on athletes' physical fitness and performance in competitive sports, 

core strength, as a key link in the human kinetic chain, has become a research focus in sports 

medicine and sports science for its scientific assessment and training optimization. The 

morphological and functional status of the core muscle groups directly relates to an athlete's 

stability, power transfer efficiency, and risk of sports injuries. 

This paper proposes an athlete core strength assessment system that integrates medical CT 

intelligent image analysis with artificial intelligence technology. An improved U-Net architecture 

achieves automatic segmentation of core muscle groups and quantification of morphological 

parameters. Combined with surface electromyography signals and an LSTM network, a core 

function prediction model is constructed, ultimately realizing cross-modal correlation analysis from 

structure to function. 

The paper is structured as follows: it reviews the current state of research on imaging and AI 
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technologies for core strength assessment; elaborates on the methods for core muscle group 

segmentation, parameter quantification, and function prediction; validates the system's effectiveness 

through segmentation accuracy, parameter correlation, and prediction error; and Section 5 

summarizes the research value and outlines future directions. 

2. Related Work 

In the field of sports medicine, with continuous technological advancements, various imaging 

techniques and artificial intelligence methods are widely used for health monitoring and injury 

diagnosis in athletes. Marano et al. [1] combined clinical presentation and exercise history to 

explore the application value of CCTA in diagnosing coronary artery abnormalities and clinical 

management in athletes. Christou et al. [2] retrospectively analyzed clinical data from mature 

athletes who underwent cardiac CT, including indications, findings, and risk factors related to heart 

disease, to evaluate the effectiveness and value of cardiac CT in pre-participation screening of 

athletes. D'Ascenzi et al. [3] reviewed the various applications of cardiac CT in sports cardiology, 

including anatomical assessment of the athlete's heart, diagnosis of exercise-related cardiovascular 

diseases, sports risk stratification, and monitoring of cardiac adaptations post-exercise. Ramkumar 

et al. [4] described the current applications and research progress of artificial intelligence in sports 

injury diagnosis, rehabilitation, and training. Sarto et al. [5] analyzed the advantages and limitations 

of ultrasound imaging in muscle and tendon assessment, and how to overcome these limitations to 

improve its application in elite sports. 

Bone stress injuries are common sports injuries among athletes, and magnetic resonance imaging 

(MRI) is an important tool for assessing the severity and healing of bone stress injuries. Hoenig et al. 

[6] analyzed the correlation between MRI grading of bone stress injuries and the time for athletes to 

return to sports. Perrey et al. [7] found that muscle oxygenation measurement technology has broad 

application potential in sports science, providing important physiological information for sports 

training and rehabilitation. Guelmami et al. [8] discussed the necessity and importance of 

establishing ethical guidelines in sports medicine and sports science research practice. McClean et 

al. [9] found that musculoskeletal injuries in university athletes are not caused by a single factor but 

by the interaction of multiple factors within the training load, fatigue, and biopsychosocial model. 

Rhim et al. [10] proposed international recommendations for the application of ESWT in sports 

medicine, providing guidance for clinicians using ESWT to treat sports-related conditions. Despite 

numerous advances in athlete health monitoring and injury diagnosis, research on the assessment of 

athlete core strength and injury prevention requires further depth. This paper aims to provide more 

scientific and precise technical support for the assessment of core strength and injury prevention in 

athletes by constructing an AI detection system for medical CT images based on athlete core 

strength. 

3. Methods 

3.1 Automatic Segmentation of Core Muscle Groups 

To accurately segment various core muscle groups from complex abdominal and lower back CT 

images, a deep convolutional neural network based on the U-Net architecture is adopted and 

improved for the specificities of muscle segmentation. The original U-Net shows limitations when 

processing images with low contrast and blurred boundaries between muscles and surrounding 

tissues like fat and organs. Therefore, an attention mechanism module is embedded in the skip 

connections between the encoder and decoder. This module adaptively learns the importance 

weights of different spatial locations in the feature maps, enabling the network to focus more on the 
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edges and texture details of muscle tissues when integrating deep and shallow features, thereby 

enhancing the recognition capability for the contours of deep and small muscles like the paraspinal 

muscles and transversus abdominis. Simultaneously, residual connections are introduced in the 

deeper layers of the network to alleviate the gradient vanishing problem in deep networks, ensuring 

effective network training and learning of richer feature representations. The entire module takes 

raw CT slices as input and, through end-to-end training, ultimately outputs a probability map of the 

muscle category for each pixel [11]. 

3.2 Morphological Parameter Quantification and 3D Modeling 

After obtaining high-precision muscle segmentation masks, quantitative morphological 

parameters are extracted and three-dimensional spatial models are constructed. First, based on the 

binarized segmentation results, the cross-sectional area of each target muscle group at specific 

anatomical levels is calculated. Simultaneously, referring back to the Hounsfield Unit values of the 

original CT images, the pixel value distribution within each muscle group region is statistically 

analyzed, using its average value as muscle density. The fat infiltration rate is further calculated 

through specific threshold ranges; this indicator directly reflects the physiological state and health 

of the muscle. Additionally, a bilateral muscle symmetry analysis algorithm is developed. By 

calculating the midsagittal plane of the trunk and comparing the cross-sectional area and density of 

corresponding muscle groups on the left and right sides, the mechanical balance of the athlete's 

trunk is quantified [12-13]. For more intuitive spatial assessment, utilizing the segmentation results 

from consecutive CT slices, the marching cubes algorithm is employed for three-dimensional 

reconstruction, generating a 3D model of the core muscle groups, including intermuscular spaces. 

This model not only visually displays the volume and spatial relative positions of the muscles but 

also provides a geometric basis for biomechanical analysis. 

Table 1 shows the morphological parameters, including cross-sectional area, muscle density, and 

fat infiltration rate, obtained through automatic segmentation and quantitative processing for five 

types of core muscle groups: 

Table 1. Quantification Results of Morphological Parameters for Core Muscle Groups 

Muscle Type 
Cross-sectional 

Area (cm²) 

Muscle Density 

(HU) 

Fat Infiltration 

Rate (%) 

Transversus 

Abdominis 
15.2 45.3 8.5 

Rectus 

Abdominis 
25.6 52.1 6.2 

Erector Spinae 35.8 48.7 12.4 

Psoas Major 20.4 55.2 9.8 

Multifidus 12.7 42.9 15.3 

There are significant differences in the morphological parameters of different core muscle 

groups. The erector spinae has the largest cross-sectional area (35.8 cm²), while the multifidus has 

the smallest (12.7 cm²), reflecting the functional division of labor among different muscles in core 

stability. Regarding muscle density, the psoas major is the highest (55.2 HU), while the transversus 

abdominis and multifidus are lower, at 45.3 HU and 42.9 HU respectively, indicating denser muscle 

tissue in the psoas major, correlating with its key role in trunk flexion and extension. The fat 

infiltration rate is highest in the multifidus (15.3%) and lowest in the rectus abdominis (6.2%), 

suggesting that the multifidus is more prone to fatty degeneration, affecting its endurance and 

recovery capacity. The quantification of these parameters provides a reliable basis for assessing the 
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structural integrity and functional status of athletes' core muscle groups and helps identify potential 

injury risks [14]. 

3.3 Core Strength Function Prediction 

To achieve the leap from static structure to dynamic function, a multimodal feature fusion and 

prediction framework is designed to effectively correlate static CT morphological parameters with 

dynamic surface electromyography signals. A temporal alignment strategy maps the time points of 

sEMG signals during specific movement cycles (like flexion-extension, rotation) to the 

corresponding body posture and muscle state during the CT scan. Subsequently, a multimodal 

feature fusion module concatenates parameters representing the macrostructure of muscles 

(cross-sectional area, density, fat infiltration rate) with sEMG features representing the 

instantaneous activation state of muscles (amplitude, frequency characteristics), forming a 

comprehensive feature vector containing both structural and functional information. This feature 

vector is then fed into a Long Short-Term Memory network. Leveraging its strong ability to handle 

sequential dependencies, the LSTM network learns the complex nonlinear relationships between the 

morphological basis of different muscles and their activation patterns and force timing during 

movement sequences [15-16]. Finally, the output layer of this network regresses, through a fully 

connected layer, two key indicators: a comprehensive core stability index, and a muscle force 

distribution probability heatmap reflecting the contribution of different muscles during the 

movement, thereby achieving intelligent and quantitative functional assessment of core strength. 

4. Results and Discussion 

This study selects medical CT images of the abdomen and lower back from professional athletes 

and synchronously collected surface electromyography signals as the dataset. The muscle contours 

and fat infiltration areas are annotated by three radiology experts collectively as the gold standard 

for analysis. All experiments are run on a workstation equipped with an NVIDIA RTX 3080 GPU, 

implemented based on the PyTorch framework. 

4.1 Automatic Segmentation Accuracy Presentation 

The segmentation accuracy of the algorithm on five types of core muscle groups is quantitatively 

analyzed by calculating the Dice coefficient and Hausdorff distance. Specific experimental results 

are shown in Figures 1 and 2: 
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Figure 1. Dice Coefficients for Automatic Segmentation of Core Muscle Groups 

The segmentation accuracy for the five types of core muscle groups shows significant 

differences. The rectus abdominis and psoas major achieve the best segmentation results, with Dice 

coefficients of 0.92 and 0.91 respectively, while the segmentation accuracy for the multifidus is 

relatively low, at only 0.84. This difference stems from the unique anatomical characteristics and 

imaging manifestations of each muscle group. The rectus abdominis, as a superficial muscle, has 

clear fascial boundaries and uniform density distribution, creating a high contrast with surrounding 

adipose tissue in CT images, providing ideal conditions for algorithm segmentation. Although the 

psoas major is deep-seated, its spindle shape and relatively independent anatomical position reduce 

segmentation difficulty. In contrast, the multifidus, as the deepest stabilizing muscle group 

alongside the spine, is not only small in volume and complex in shape but also lacks clear 

anatomical separation from adjacent erector spinae groups. Combined with partial volume effects, 

this significantly reduces boundary distinguishability. Furthermore, the medium segmentation 

accuracy for the transversus abdominis and erector spinae reflects an anatomically challenging 

environment of medium difficulty; the former is limited by the characteristics of thin-layer muscles 

and interference from respiratory motion artifacts, while the latter faces the challenge of 

inter-muscular overlap. These results fully demonstrate the adaptability of the improved U-Net 

architecture in handling segmentation tasks for muscle groups of varying complexity, while also 

revealing that the segmentation of deep, small muscle groups remains a current technical challenge. 
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Figure 2. Hausdorff Distance for Core Muscle Group Segmentation 

The psoas major shows the best boundary localization accuracy with the smallest Hausdorff 

distance (1.96 ± 0.54 mm), benefiting from its relatively regular geometric shape and clear 

muscle-fat interface. The rectus abdominis follows closely (2.15 ± 0.62 mm), its good performance 

stemming from the clear rectus sheath boundary. In contrast, the multifidus not only has the lowest 

Dice coefficient but also the largest Hausdorff distance (4.13 ± 1.12 mm), reflecting suboptimal 

consistency and stability in boundary segmentation for this muscle group, directly related to its 

complex fan-shaped structure and anatomical characteristic of tight attachment to the vertebral 

lamina. The medium-level Hausdorff distances for the erector spinae and transversus abdominis 

(2.78 ± 0.91 mm and 3.42 ± 0.85 mm, respectively) further confirm the positive correlation between 

segmentation difficulty and structural complexity. The Hausdorff distances for all muscle groups 

remain within a reasonable range, indicating good robustness of the algorithm across different 

individuals. 

4.2 Validation of Morphological Parameter Quantification Results 

Using pathological detection results as the gold standard, abdominal and lower back CT images 

from 50 athlete samples are collected. The core muscle groups are automatically segmented via the 

improved U-Net architecture, and the fat infiltration rate is calculated. The AI detection results are 

compared and analyzed against the pathological gold standard, as shown in Figure 3: 
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Figure 3. Correlation Analysis between AI-detected Fat Infiltration Rate and Pathological Gold 

Standard 

The correlation analysis results show a high degree of consistency between the AI detection 

system and the pathological gold standard in the quantitative assessment of fat infiltration rate. The 

data points in the scatter plot are closely distributed on both sides of the regression line, with a 

correlation coefficient of 0.976, indicating a strong linear correlation between the two methods. In 

regions with higher fat infiltration rates (>15%), the data points are slightly more dispersed, 

reflecting the challenge posed by increased tissue heterogeneity in cases of severe fat infiltration for 

algorithm recognition. In the medium to low fat infiltration rate range (5%-12%), the data points are 

more concentrated, showing better detection stability. Overall, the correlation analysis confirms the 

reliability of the AI system in quantitatively assessing fat infiltration in core muscle groups, 

providing support for subsequent clinical applications. 

4.3 Functional Prediction Model Performance 

Five core strength test movements are executed in a standardized laboratory environment: trunk 

flexion, trunk extension, trunk left rotation, trunk right rotation, and plank. Each movement is 

repeated 3 times. A Vicon three-dimensional motion capture system (sampling frequency 100 Hz) 

synchronously captures full-body motion trajectories using 8 MX-T40 cameras, while 2 Bertec 

force plates (sampling frequency 1000 Hz) record ground reaction force data. The core stability 

index for biomechanical testing is derived by calculating a weighted composite score of center of 

gravity sway amplitude and lumbar joint moment variance. Surface electromyography signals are 

synchronously collected using a Delsys Trigno wireless system (sampling frequency 2000 Hz, 

bandwidth 20-450 Hz) attached to the muscle belly positions of 5 core muscle groups (transversus 

abdominis, rectus abdominis, erector spinae, psoas major, multifidus). The sEMG signals are 
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full-wave rectified and low-pass filtered at 10Hz to extract root mean square and median frequency 

features. These are temporally aligned with the morphological parameters obtained from CT images 

and input into the trained LSTM model to predict the core stability index. The predicted values are 

finally compared with the biomechanical test gold standard, and the root mean square error for each 

movement is calculated. The results are shown in Table 2: 

Table 2. Core Strength Prediction Values vs. Biomechanical Test Results 

Test 

Movement 

Type 

Predicted 

Core Stability 

Index 

Measured 

Core Stability 

Index 

Absolute 

Error 

Root Mean 

Square Error 

(RMSE) 

Trunk 

Flexion 
84.6 83.2 1.4 1.8 

Trunk 

Extension 
78.3 79.5 1.2 1.5 

Left Trunk 

Rotation 
81.9 82.4 0.5 0.7 

Right Trunk 

Rotation 
82.1 81.7 0.4 0.6 

Plank 89.8 88.9 0.9 1.1 

The functional prediction model demonstrates good predictive performance across all five core 

strength test movements, with absolute error ranges from 0.4 to 1.4 and root mean square error 

ranges from 0.6 to 1.8. The model achieves the highest prediction accuracy for rotational 

movements (left and right rotation), with RMSEs of 0.7 and 0.6 respectively, which is related to the 

relatively stable synergistic activation patterns of core muscle groups during rotation. The errors are 

slightly larger for flexion and extension movements, with RMSEs reaching 1.8 and 1.5, originating 

from the complexity of multi-planar spinal motion in these actions, which increases prediction 

difficulty. The predicted values maintain high consistency with the measured values across different 

movement types, confirming that multimodal feature fusion and the LSTM network can effectively 

capture the intrinsic relationship between the morphological characteristics of core muscle groups 

and their dynamic function, providing a quantitative basis for athlete core strength assessment. 

5. Conclusion 

This study constructs an integrated detection system encompassing automatic segmentation of 

core muscle groups, quantification of morphological parameters, and prediction of core strength 

function, effectively addressing the pain points of reliance on subjective experience and insufficient 

quantification in traditional athlete core strength assessment. However, the current model is 

primarily based on static CT images and sEMG signals collected in laboratory environments, not 

fully covering the dynamic changes of athletes in real sports scenarios. Furthermore, the sample size 

is relatively limited, and the model's generalizability across different sports disciplines and athletic 

levels requires further validation. Future research will focus on expanding sample diversity, 

incorporating dynamic imaging data, and integrating real-time biomechanical parameter collection 

during movement using wearable devices to enhance the model's dynamic prediction capability and 

clinical applicability. 
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