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Abstract: The integration of cloud computing, big data, artificial intelligence, and image 

recognition technologies is driving the intelligent upgrading of various industries. Cloud 

edge collaborative computing has become a key supporting technology for artificial 

intelligence image recognition by integrating the strong computing/storage capabilities of 

the cloud with the low latency real-time processing advantages of the edge. However, 

existing research has significant shortcomings in the integrated process of model training 

inference, joint inference strategies for edge resource constrained scenarios, and 

imbalanced samples in federated learning, which restrict its efficient application. To this 

end, this article focuses on three aspects of research in the field of artificial intelligence 

image recognition: firstly, a cloud edge collaborative image training and inference 

integrated task offloading model based on Kubernetes/Kubeedge framework is constructed, 

which realizes the full process automation deployment of cloud model training, mirror 

issuance, and edge inference; Secondly, a resource constrained cloud edge collaborative 

inference task offloading strategy is proposed, which triggers collaborative inference by 

monitoring edge load overruns and inference probability values; Finally, to address the 

issue of imbalanced samples in federated learning, a comprehensive weight evaluation 

method based on local model accuracy, stability, and sample size is proposed to optimize 

global model aggregation. The experimental results show that the integrated process can 

reduce data transmission delay and improve inference response speed. The joint inference 

strategy has significantly better inference efficiency and accuracy than traditional methods 

in medical pathology and marine fish image classification scenarios. The federated learning 

aggregation method effectively weakens the influence of sample differences and improves 

the accuracy of the global model in imbalanced sample scenarios. This research provides a 

reusable cloud side collaborative architecture design and performance optimization scheme 

for the vehicle intelligent analysis system, balancing low latency, high accuracy and 

privacy protection requirements. In the future, it will expand the task resource data 

collaboration mechanism of the Internet of Things scene, explore the reasoning mechanism 

of the complex scene of the industrial Internet, and optimize the accuracy of the global 

model by combining sample imbalance processing and aggregation methods, to promote 

the efficient application of cloud side collaborative computing in a wider range of 

scenarios. 
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1 Introduction 

The integration of cloud computing, big data, artificial intelligence, and image recognition 

technology has promoted the intelligent upgrading of various industries, especially in fields such as 

healthcare, ocean, and smart cities. Cloud edge collaborative computing has become a key 

supporting technology for artificial intelligence image recognition by integrating the strong 

computing/storage capabilities of the cloud and the low latency real-time processing advantages of 

the edge. However, existing research still has significant shortcomings in the integrated process of 

model training inference, joint inference strategies in edge resource constrained scenarios, and 

sample imbalance in federated learning. Model separation leads to inefficient processes, joint 

inference relies heavily on model segmentation or single accuracy threshold decisions, data non 

independent and identically distributed in federated learning and sample imbalance lead to local 

model contribution bias, and traditional data augmentation or sharing methods are prone to privacy 

violations. To address these challenges, this article focuses on the architecture design and 

performance optimization of a vehicle intelligent analysis system based on deep learning and edge 

cloud collaboration. By constructing an integrated process of cloud model training based on 

Kubernetes/Kubeedge framework, mirroring and issuing to the edge for inference, the difficulty of 

model online updates is solved; Design a dynamic task offloading strategy that combines load 

overload and inference probability threshold to optimize joint inference performance in edge 

resource constrained scenarios; Propose a comprehensive weight evaluation method based on local 

model accuracy, stability, and sample size, improve federated learning model aggregation, and 

enhance the accuracy of the global model in sample imbalance scenarios. The theoretical innovation 

of this article lies in formally describing the correlation between cloud edge collaborative tasks, 

resources, and data, and improving the integrated process model and joint reasoning strategy; The 

technological breakthrough is reflected in the development of plugins based on the 

Kubernetes/Kubeedge/Sedna framework and their integration into the cloud edge collaboration 

platform. Through multi scenario verification such as medical pathology images and marine fish 

images, the performance is superior to traditional solutions; The practical value lies in providing 

reusable cloud edge collaborative architecture design and performance optimization solutions for 

vehicle intelligent analysis systems, balancing low latency, high precision, and privacy protection 

requirements, and promoting the implementation and application of low latency, high precision, 

safe and reliable intelligent vehicle analysis systems. 

2 Correlation theory 

2.1 Analysis of Cloud Edge Collaboration Technology Fusion Architecture 

Cloud computing[1]~[7], with its ultra large scale, virtualization, high scalability, and 

containerization orchestration capabilities, provides dynamic and scalable computing resources and 

storage support for enterprises, becoming the core infrastructure for massive data processing; Edge 

computing significantly reduces transmission delay[10]~[12] and improves response speed through 

localized processing of data sources. It is suitable for Internet of Things [10]~[12] and mobile data 

scenarios. Although it faces resource constrained challenges, its processing capacity continues to 

increase with the coordinated development of cloud edge. Cloud edge collaborative computing 

integrates the advantages of both, optimizing system performance through task offloading and 

resource allocation - processing complex tasks in the cloud, achieving fast response at the edge, 

while enhancing privacy protection through localized data processing, reducing energy 

consumption, and improving operational efficiency. This technology has been widely applied in 

scenarios such as image recognition model training, edge inference, joint inference, and federated 
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learning, forming a collaborative system of "cloud strong computing edge low latency"[10]~[12] , 

becoming a key technical support for promoting intelligent upgrading in various industries, 

especially in intelligent analysis scenarios that require low latency and high privacy protection. 

2.2Analysis of Cloud Edge Collaborative Task Unloading and Federated Learning Model 

Aggregation Technology 

Cloud based training edge inference task offloading achieves integrated operations of model 

training, image generation and issuance, and inference tasks through cloud edge collaborative 

architecture. Utilizing YAML files [10]~[12] to schedule cloud resources such as CPU, memory, 

Pod container quantity, and data paths, task execution efficiency and resource utilization are 

optimized, and data transmission latency is reduced; Edge inference relies on edge nodes to perform 

offloading tasks, reducing cloud burden and shortening response time. To address the issue of 

limited edge node resources, cloud edge collaborative joint inference tasks are offloaded using 

model segmentation methods (shallow network edge processing is transmitted to cloud based deep 

inference) or dynamic model selection algorithms (lightweight models are deployed at the edge and 

whether to upload to the cloud is determined based on inference probability thresholds), but the 

problem of frequent interactions or incomplete judgment conditions needs to be addressed. Cloud 

edge collaborative federation learning model aggregation generates a global model by aggregating 

local models locally trained by each participant through the central server, which is divided into 

horizontal federation (with the same characteristics and different labels) and vertical federation 

(with the same labels and different characteristics). The traditional FedAvg algorithm[10]~[12]  is 

weighted based on the sample proportion. When the samples are unbalanced or the quality of local 

models is different, it needs to combine model evaluation and high-quality model mining to adjust 

the weight to eliminate the impact of data islands and sample deviations. Kubernetes, as an open-

source container orchestration platform, implements cluster interface management, resource 

scheduling, storage configuration, and load balancing through components such as API Server[10] , 

Scheduler, ETCD, Kube proxy, etc. It can be combined with Kubeedge to build a cloud edge 

collaborative environment; Kubeedge extends edge computing capabilities based on Kubernetes, 

supports container application deployment to the edge layer, provides node authentication, task 

unloading, load balancing and cloud edge data synchronization functions, and forms a "cloud edge 

end" integrated architecture; As a sub project of Kubeedge, Sedna supports modular development 

and is compatible with mainstream AI frameworks such as Tensorflow and Pytorch. It interfaces 

with Kubernetes and Kubeedge through interfaces such as GlobalManager API and LocalController 

API  to achieve rapid updates and deployment of functional modules. The three together form the 

technological foundation of cloud edge collaborative computing, promoting the implementation of 

low latency and high scalability intelligent applications. 

3 Research method 

3.1  Research on Integrity and Security Protection of Cloud Storage Data 

Cloud edge collaborative computing integrates the strong computing power of the cloud with the 

low latency characteristics of the edge, achieving a collaborative mode of cloud model training and 

edge inference, effectively alleviating the network bandwidth pressure and response delay caused 

by cloud inference, especially suitable for delay sensitive scenarios such as medical images. 

However, the traditional process of separating training and inference has problems such as 

cumbersome transformation and deployment, frequent cloud edge interactions, and low execution 

efficiency. It is necessary to build an integrated task offloading model to simplify the process and 
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optimize resource allocation. This article proposes an image training and inference integrated task 

offloading model based on cloud edge architecture, as shown in Figure 1, 

 

Figure 1 Task offloading model integrating cloud edge architecture image training and inference 

The model consists of three core steps: cloud model training, model image creation and 

distribution, and edge inference. Through YAML orchestration and automatic deployment 

technology, a training container is created in the cloud based on deep learning frameworks and 

datasets. CPU and memory resource requirements are specified, and after completing model 

training, executable programs are packaged using Pyinstaller. Container images are generated using 

Docker and stored in the image repository; Edge nodes apply for resources through YAML files, 

pull the image, and start the inference container to perform image recognition. In terms of formal 

modeling, define a set of cloud edge nodes 
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after the task is submitted, the master node determines the node resources    and task 

requirements    based on themw match uninstallable nodes and optimize the objective function 
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Minimize task execution time and data transmission delay to achieve efficient offloading under 

task resource collaborative allocation. This model automates the training inference process through 

containerization, YAML orchestration, and other technologies, ensuring the efficiency of model 

development and deployment, as well as the accuracy of inference speed. It provides theoretical 

support and technical path for intelligent applications in cloud edge collaboration scenarios. 

3.2 Research on Integrity Verification and Fast Recovery Mechanism for Multi Cloud Data 

Migration 

The integrated task offloading of image training and inference based on cloud edge architecture 

achieves task resource data collaborative allocation through YAML files that integrate resource 

application and Pod container offloading, in order to minimize task execution time and data 
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transmission delay. In the training stage of the image recognition model, a CNN-LSTM neural 

network model is used. After normalizing the pathological images as input, the convolutional layer 

extracts features through convolutional kernels 
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After dimensionality reduction in the pooling layer, it is passed to the LSTM layer, and the 

parameters are corrected by backpropagation using the Adam algorithm. Finally, training is 

completed through Softmax classification. After the training is completed, Pyinstaller packages the 

code to generate an executable program, and Docker builds an image medical track: latest based on 

Dockerfile and stores it in the image repository. During the image distribution phase, the medical 

test image is generated by importing the inference program and dependency environment through 

Dockerfile. When unloading inference tasks, YAML files specify deployment to the edge layer 

EdgeNode node, control the number of Pods through minReplicas/maxReplicas, apply for 1 core 

CPU/1GB memory resources with the Resources Requests tag, pull image files with the Image tag, 

and configure data reading and result output paths with the Env tag. After the task is submitted, the 

master node matches the resource requirements (such as training tasks requiring 4 cores of 

CPU/4GB of memory, and inference tasks requiring 1 core of CPU/1GB of memory), selects the 

node with the smallest delay execution time from the available node queue to complete the 

uninstallation, and achieves efficient collaboration between cloud training and edge inference. 

3.3 Analysis of Experimental Results of Image Training and Reasoning Integration Based on 

Cloud Edge Architecture 

The experimental environment is built on a supercomputing platform, including 1 master node 

(8CPU/16GB), 5 node nodes (8CPU/8GB), 1 file storage, 1 image repository, and 3 EdgeNode edge 

nodes (2CPU/2GB to 4CPU/4GB). The cloud edge collaboration performance is verified using 

20000 medical pathology images (16000 training sets/4000 test sets). Experiment 1: 

Implementation of cloud training edge inference integration process: Design an 8-layer CNN-

LSTM model (3-layer convolutional layer/2-layer pooling layer/1-layer LSTM layer/fully 

connected layer/output layer) with 5 × 5 convolutional kernels, 1 step size, and 3 numbers. After 

20 epochs of training, the model accuracy reaches 0.7849; After the training is completed, a medical 

transfer: latest image is generated using Dockerfile and stored in the image repository. The edge 

node pulls the image and starts the Pod to complete the inference. Experiment 2: Comparison of 

cloud and edge inference performance: In 20 experiments, the total time for edge inference was less 

than that in the cloud, due to the low latency of edge data transmission (VPN simulation bandwidth 

of 20M, significantly shorter transmission time than the 10M bandwidth of public IP); The pure 

inference time is similar, but the difference in data transmission time is significant (edge 

transmission time 33s-27s vs cloud 84s-123s). Specific cases show that the total edge time of 284 

seconds (inference 241s+transmission 33s) in the first experiment was 12.9% faster than 326 

seconds in the cloud, and the total edge time of 260 seconds in the 20th experiment was 25% faster 

than 348 seconds in the cloud, mainly due to low latency transmission at the edge. Experiments 

have shown that the cloud edge collaborative integration process can efficiently deploy models, and 

edge inference significantly improves task execution efficiency and response speed by reducing 

long-distance transmission delays, verifying the effectiveness of cloud edge architecture in time 

sensitive scenarios such as medical pathology image recognition. 

4 Results and discussion 

4.1Improving the System Model of CP-ABE Data Sharing Scheme 
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For resource constrained scenarios, cloud edge collaborative image inference task offloading 

optimizes task allocation through a dual trigger strategy of load overload and low recognition 

probability. When the load exceeds the limit, calculate the CPU/memory resource limit parameter 

through the formula 1 : if   
   

  or  
n    ,  1 =  pause the task and check the network 

transmission status; Calculate the minimum transmission time  n  and actual transmission time 

      according to the formula, if        n   .Then, trigger cloud migration. Extracting the 

maximum probability value of an image after edge inference in low probability scenariosB If     

so  =  , trigger secondary cloud inference. The algorithm is implemented based on the Sedna 

plugin . By configuring the apiVersion to Sedna. io/v1 alpha 1 using YAML, the Sedna interface is 

called and the joint_inference: latest image is deployed. Global variables such as load threshold and 

network bandwidth are integrated to achieve resource network accuracy collaborative optimization. 

Experimental verification shows that this method can effectively reduce edge resource pressure, 

improve inference efficiency and recognition accuracy, and is suitable for large image and high 

real-time demand scenarios such as medical pathology and marine biology. 

4.2 Model experiment 

The experimental design of a resource constrained cloud edge collaborative image inference task 

offloading method involves deploying Kubernetes Kubeedge Sedna architecture on a 

supercomputing platform, where the main node (8CPU/16GB memory) and EdgeNode (2CPU/2GB 

memory) are connected through a 2M bandwidth to simulate high latency transmission. Two 

scenarios were tested: (1) Medical pathology image recognition, using 4000 esophageal cancer 

images, with 2000 images randomly selected from each group, for a total of 10 groups. EdgeNode 

deployed a lightweight model (batch size of 20, up to 3 concurrent tasks), while the main node 

deployed a high-precision model. (2) Ocean fish image recognition, using 2000 images, randomly 

select 10 groups of 1000 images per group according to a similar deployment. Both scenarios 

compared the proposed cloud edge collaborative inference algorithm with Sedna's default joint 

inference algorithm, recording the total completion time, EdgeNode CPU/memory utilization, data 

transfer volume, and recognition accuracy. The results indicate that in both cases, the proposed 

algorithm outperforms Sedna's default algorithm. For medical pathology (Group 3), the proposed 

method reduced total time by 21% (442 seconds vs. 559 seconds), EdgeNode processing time by 

23.4% (394 seconds vs. 515 seconds), CPU/memory utilization by 11.3%/14.6% (70%/76% vs. 

79%/89%), while improving accuracy by 3.6% (69.7% vs. 66.1%), and offloading 257 images to 

the cloud. For marine fish (Group 5), it reduced the total time by 26.8% (486 seconds vs. 664 

seconds), EdgeNode processing time by 24.6% (456 seconds vs. 605 seconds), CPU/memory 

utilization by 12.1%/12.9% (72%/81% vs. 82%/93%), unloaded 94 images, and achieved higher 

accuracy. These improvements stem from the algorithm's dual strategy: (1) offloading tasks when 

EdgeNode resources exceed a threshold (70% CPU/75% memory) to avoid overload and maintain 

efficient processing; (2) Unload low confidence images (below tolerance threshold, such as medical 

0.55/ocean 0.5) to a high-precision model in the cloud for re identification to improve accuracy. 

This method effectively balances the resource utilization rate and task efficiency of the EdgeNode, 

and alleviates the problem of slow reasoning speed and low precision caused by the limited edge 

computing capability. By dynamically adjusting task offloading and utilizing cloud edge resources 

for collaboration, it improves inference efficiency and accuracy, and enhances the service quality of 

edge intelligent applications. 

4.3 Effect analysis 
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The experiment is based on the deployment of Kubernetes Kubeedge Sedna cloud edge 

collaborative architecture, including one master node (8CPU/16GB memory) and three participant 

nodes (each 4CPU/4GB memory+Tesla T4 GPU). The esophageal early cancer pathology image 

dataset (20000 images, approximately 6500 normal/low/high-level samples each) is used, and 4000 

images are extracted as the common test set. The remaining 16000 images are shown in Table 1 

Table1 Sample Data Allocation Details 

Experiment Group 
Participant-1 (Normal, 

Low, High) 

Participant-2 (Normal, 

Low, High) 

Participant-3 (Normal, 

Low, High) 

Group 1 3400, 200, 200 200, 3400, 200 1000, 1000, 2000 

Group 2 550, 1000, 400 500, 300, 2000 250, 500, 2200 

Group 3 1750, 1750, 1250 1650, 1850, 1250 1550, 1550, 1650 

Group 4 1650, 1700, 1670 1650, 1720, 1650 1620, 1715, 1685 

Group 5 150, 1800, 1800 100, 1800, 1900 150, 1500, 1300 

Group 6 1000, 1000, 1000 1500, 1500, 1500 2000, 2000, 2000 

Group 7 100, 3400, 1400 1200, 1000, 1300 3600, 900, 2900 

Group 8 1200, 1500, 2200 1900, 2100, 1500 2100, 1700, 1700 

Group 9 3000, 200, 200 1000, 1200, 1400 1000, 1300, 1300 

Group 10 200, 1500, 500 500, 1500, 1000 200, 1000, 2500 

Randomly allocate to 3 participants to simulate an imbalanced sample scenario (e.g. Group 1: 

Participant 1 holds 3400 normal level+200 low/high level; Participant 2 holds 200 normal 

level+3400 low level+200 high level). Ten experimental groups were set up to compare the global 

model accuracy of the cloud edge collaborative model aggregation method in this chapter with 

Sedna's default FedAvg method. The average global model accuracy of the method in this chapter 

was higher than that of FedAvg. Specifically, the accuracy of the first group experiment was 52.7% 

(FedAvg 49.2%), due to the fact that Participant 3 had a local model stability weight of 57% and a 

contribution value weight of 41% (Table 2) 

Table 2 Weight Allocation of Local Models in Cloud-Edge Coordinated Aggregation  

Participant 
Max Accuracy 

Weight 
Stability Weight 

Sample 

Proportion 

Weight 

Contribution 

Weight 

Participant-1 36% 21% 33% 30% 

Participant-2 34% 22% 33% 29% 

Participant-3 30% 57% 34% 41% 

Lead global aggregation; The accuracy of the sixth experiment was 58.2% (FedAvg 55.1%), 

with a sample size of 2000 participants and a maximum recognition accuracy weight of 

42%+stability weight of 63% (as shown in Table 3) 

Table3 6th Exp. Cloud-Edge Aggregation Local Model Weight 

Participant 
Max Accuracy 

Weight 
Stability Weight 

Sample 

Proportion 

Weight 

Contribution 

Weight 

Participant-1 27% 20% 23% 23% 

Participant-2 31% 17% 33% 27% 
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Participant-3 42% 63% 44% 50% 

Contribution value weight of 50%, reducing the impact of low-quality models; The accuracy of 

the third experiment was 57.7% (FedAvg 56.2%), the stability weight of Participant 3 was 62%, the 

contribution weight was 49%, and the overall recognition was stable. The analysis shows that the 

method proposed in this chapter effectively alleviates the global model bias caused by sample 

imbalance through local model quality evaluation and contribution value weight adjustment. 

Experimental data validates the effectiveness of this method in complex sample scenarios such as 

medical pathology. 

5 Conclusion 

This article focuses on the research of cloud edge collaborative task offloading methods in the 

context of artificial intelligence image recognition. Innovative achievements have been made in the 

integrated process of model training inference, optimization of inference in resource limited 

scenarios, and the problem of imbalanced federated learning samples. The study first constructed an 

image training and inference integrated task offloading model based on cloud edge architecture, and 

implemented the full process automation deployment of cloud model training, mirror issuance, and 

edge inference through Kubernetes/Kubeedge framework. Experimental verification showed that it 

can reduce data transmission latency and improve inference response speed; Secondly, a resource 

constrained cloud edge collaborative inference task offloading strategy is proposed, which triggers 

collaborative inference by monitoring edge load overload and inference probability values. After 

integration into the Sedna platform, the inference efficiency and accuracy are significantly better 

than traditional methods in medical pathology and marine fish image classification scenarios; 

Finally, to address the issue of imbalanced samples in federated learning, a method for evaluating 

aggregated weights that integrates local model accuracy, stability, and sample size is proposed. This 

method has been proven effective in reducing the impact of sample differences on the global model 

and improving model accuracy in multi scenario experiments on medical pathology datasets. Future 

research will focus on three major directions: firstly, expanding the collaborative mechanism of task 

resource data in the context of the Internet of Things to further improve execution efficiency; The 

second is to explore the cloud side collaborative reasoning mechanism in the complex scene of 

industrial Internet; The third is to combine sample imbalance processing and aggregation methods 

to optimize the accuracy of the global model, and promote the efficient application of cloud edge 

collaborative computing in a wider range of scenarios. 
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