
Scholar Publishing Group

Distributed Processing System

https://doi.org/10.38007/DPS.2021.020107

ISSN 2790-0916 Vol. 2, Issue 1: 83-91

Copyright: © 2021 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

83

Design and Implementation of Distributed Resource

Management and Platform Deployment Based on Logical

Clock

Saravannan Sriddevi
*

Tamale Technical University, Ghana

*
corresponding author

Keywords: Logical Clock, Distributed Systems, Resource Management, Platform

Deployment

Abstract: With the rise of cloud computing technology and the continuous improvement

and progress, at the same time, in the environment of technological innovation, the demand

for information construction is becoming more and more urgent. The purpose of this paper

is the design and implementation of distributed resource management and platform

deployment based on logical clocks. After comparing container technology and virtual

machine technology, this paper uses cloud computing-related technologies such as

containers and orchestration tools to analyze scheduling strategies within the laboratory,

platform design and service deployment to build a resource management platform. After

studying the scheduling strategy, this paper designs, implements and deploys the platform

and services. The hardware, network and other environments of the laboratory are

configured and planned, and then the overall architecture of the resource management

platform is designed. Latency test results for business deployments show that when the

data grows significantly, the time taken by the system also increases, especially when the

data goes from 500 MB to 1 GB. The delay test results of service unloading show that the

size of the data does not have a great impact on the delay of unloading services, but the

overall efficiency of the distributed resource management.

1. Introduction

With the improvement and development of information technology and digital manufacturing,

the main purpose of information technology and digital manufacturing is to manage digital

resources and ensure information services as auxiliary means. Management and improvement of the

construction cycle is long. Only through long-term accumulation and precipitation, all participants

can continuously supplement and improve the comprehensive digital resource library with rich

Distributed Processing System

84

content and wide-ranging orientation in the digital resource management platform [1]. Therefore, in

IT and digital construction, it is necessary to create an open, shared, clear and easy-to-use digital

resource management with high security; at the same time, it can also improve recruitment and

utilization [2].

Scholars at home and abroad have conducted various researches on distributed resource

management and deployment platforms. Schwenkreis F proposed a method to convert collected

team handball game data into a format that allows the use of taxonomy and methods to search for

association rules. To be able to search for patterns at any time of a match, the concept of a logical

clock is introduced, which becomes an important part of data preparation. The applied data mining

method is described in detail using the RapidMiner process and its settings. However, this method is

independent of the data mining tools used. Based on the results of the data mining process, the

applicability of data mining techniques in a given context will be discussed. In particular, it will be

shown that rule-based results have significant advantages over methods using SVMs in a given

context. The results are also compared against logical clocks, which will show how the pattern

evolves over time in the case of team handball [3]. Pozzetti T proposed several implementations of

smart clocks, most recently Coded Vector Clock (EVC), a scalar Coded Vector Clock (VC)

framework that uses prime numbers to improve performance and size. The concept of Resettable

Vector Code Clock (REVC), a new EVC-based logic clock implementation, was proposed and

developed in response to its extremely high growth rate. Show how to use REVC in shared memory

and message passing systems to achieve stable computing clocks. Let's take the growth rate

advantage of REVC over EVC as an example. Finally, the practical application of REVC to the

problem of dynamic contention detection in a multithreaded environment is introduced. This tool

compares with current VC-based hardware DJIT^+ to show how REVC can help achieve

high vector clock performance [4]. Drozd introduces dynamic clock signal routing designed to

avoid synchronization failures in computing systems such as FPGAs. The proposed design reduces

power consumption and improves power steering control in FPGA systems. These benefits are due

to improvements in the assessment and measurement of the corresponding power base. Power

parameter analysis has proven to be a good solution for detecting synchronization faults that destroy

smart circuits. The main advantage is that traditional in-circuit testing based on intelligent control

can be used to detect hidden synchronization errors in safety-related systems. Two main types of

energy-oriented monitoring are considered: energy consumption and concurrent energy source

regulation, using temperature and current energy sensors, respectively. Experiments are performed

on a real FPGA system with controlled synchronous optimization and computer-aided design (CAD)

tools are used to calculate the reduced values of power parameters. The results show that the control

of the FPGA system is limited when the clock signal is used for temperature and power monitoring

[5]. To sum up, some research achievements have been made in the design and implementation of

distributed resource management and deployment platforms at home and abroad, which is very

inspiring and meaningful for the development of this research work.

The purpose of this paper is to obtain a distributed system resource management that can

automatically deploy services in a cluster and automatically manage services. Based on the OCF

framework, the platform develops and deploys services in the form of components based on

existing OCF components. Based on the resource management of the underlying system, the

platform adopts an extensible node allocation strategy for node allocation, deploys and uninstalls

services in the form of components, and abandons the traditional way of deploying and deploying

isolation. The services are tightly coupled, thereby reducing the cost and difficulty of operation and

maintenance, improving the stability of cluster services, and improving the resource utilization

Distributed Processing System

85

efficiency of the entire cluster. On these two subsystems, a distributed development platform is built.

Automated deployment and management capabilities.

2. Research on Distributed Resource Management and Platform Deployment Based on

Logical Clock

2.1. Clock Constraint Language - CCSL

The core concept of Clock Con-straint Specifcation Language (CCSL) is the logical clock. One

instant corresponds to a tick of the clock. The logical clock c can be expressed as a two-tuple, where

Ic represents the set of moments, which is a total order on Ic, and the subscript can be omitted when

there is no ambiguity. Based on logical time, CCSL only cares about the order relationship between

moments, not the exact physical time interval between two moments [6-7]. Obviously, workers are

discrete, according to <. The specified order can be a natural number I. The time number in, c[k]

represents the kth time. CCSL also provides three other operators for specifying moment

relationships, <, = and #. < is a reflexive, transitive binary relation that can be used to express

causality [8-9].

CCation provides a variety of clock constraints to illustrate the relationship between clocks.

Clock constraints can be divided into clock relations and clock expressions. The former describes

the relationship between two clocks. The description of the clock relationship by the clock

constraint is based on the description of the time relationship of the corresponding clock. The clock

constraints provided by CCTL can express a variety of computing communication rules, such as:

there are both rules for smart computing and communication, and rules for asynchronous computing

and communication [10-11].

2.2. Distributed File System

Distributed file system is one of the important technologies supporting storage computing

environment. Distributed file system eliminates some failure points and performance bottlenecks by

cooperating with multiple nodes, and aims to meet key characteristics such as high availability, high

performance and high load [12-13].

Through the research on the shared cloud file storage system, the aim is to fully integrate the

software and hardware resources of various application servers and computers embedded in the

digital construction of schools, to achieve high-quality sharing of resources of each application

server and computer, and to understand the distribution in storage. The HDFS definition of the file

system has been modified to better lay the foundation for the management of internal cloud storage

resources in colleges and universities, and provide a reliable and comprehensive architecture design

and management platform. Cloud storage architecture. Since the construction of a digital resource

platform must consider a relatively long construction time, the digital resource management

platform decided to adopt HDFS as the basic system architecture [14-15].

2.3. Object Storage Swift

The Swift storage system has two basic modules, namely proxy server and storage server [16-17].

The proxy server is the interface between the storage system and the outside, which is responsible

for forwarding user requests to the appropriate storage server, and the storage server is responsible

for storing the data in the cluster. The storage server has three types of accounts, containers and

Distributed Processing System

86

objects. Users have their own Swift accounts in the cluster, and multiple containers can be created

under the account, and the containers complete the storage of objects. Swift completes the mapping

of storage objects to their physical storage locations through Ring. The structure uses a consistent

hashing algorithm and introduces virtual nodes to ensure that even when the number of nodes in the

cluster changes, data movement can be reduced as much as possible. It can also ensure the balanced

storage of data in the cluster. In Swift, accounts, containers and objects have corresponding rings

[18].

3. Design and Research of Distributed Resource Management and Platform Deployment

Based on Logical Clock

3.1. Platform Deployment Environment

The network environment of the laboratory consists of an intranet and an extranet. In the internal

network, each teaching and research room uses the switch H3CS1224P-X to connect the personal

computer. In order to isolate the network of different teaching and research offices, and uses the

routing function of the three-layer switch UnicacaUN-21608K. In addition, each teaching and

research room has a router connected to the external network. By configuring multiple IP addresses

on the personal computer and configuring the back route on the server, users can access the internal

network and the external network at the same time.

Table 1. Platform server configuration

 CPU RAM Storage NIC GPU

Master 2*INTEL E7-4870 256G 6T 4 0

Node 1 4*INTEL E7-4870 512G 6T 4 2*GTX2080

Node 2 4*INTEL E7-4870 512G 6T 4 2*GTX2080

Storage Node 1 2*INTEL E7-4870 256G 20T 4 0

Storage Node 1 4*INTEL E7-4870 256G 20T 4 0

The platform currently includes 5 servers, and the related configurations are shown in Table 1.

One of them is the master node of the platform, two are equipped with GeForce GTX2080 graphics

card, the server with strong performance is used as the working node Node, which is responsible for

running the Pod, and the remaining two have sufficient storage to provide the storage and backup

services of the cloud platform. The operating system Ubuntu is pre-installed on each server, and

Dockerv and Kubernetesv1.20.1 environments are built. Each deployment is a heavy workload, so

this article writes a shell script to automate deployment.

3.2. Platform Architecture Design

The resource management platform of this paper is divided into resource layer, management

layer, application layer and presentation layer from top to bottom.

Figure 1. The resource layer is infrastructure resources, including physical host servers, storage

and network resources; the management layer integrates some tools for monitoring and managing

the system, such as the container orchestration framework Kubernetes; the application layer

describes the services provided in the resource management platform, such as code warehouse

Gitlab, warehouse manager Nexus, identity authentication LDAP, to complete the management of

resources such as code, mirroring and personnel, as well as some heavy computing tasks (such as

Distributed Processing System

87

deep learning) related services; the presentation layer is the user operation and use management

platform The perform operations such as remote debugging, service management and visual

resource monitoring. Services run on the platform as containers and are managed by Kubernetes.

Figure 1. Resource management platform architecture

3.3. Clock Model

In electronic applications, clock components are often required to provide a periodic clock signal

as their normal operating time. These clock elements typically use the piezoelectric effect of a

crystal oscillator or the resonant frequency selection of an oscillator circuit to determine the clock

frequency, ie clock speed. The number of oscillations is recorded by a counter and converted to the

current clock value.

According to the characteristics of the above clock components, in the general case, the clock in

the device can be modeled as:

)0()(
1

)(
0

0

   dssf
f

t
t

 (1)

where τ(t) is the hardware time of the node at the reference time t, fo is the operating frequency

marked on the oscillator, f(s) is the actual operating frequency of the oscillator, and τ(0) is the clock

value of the node at the initial moment.

When the device works in a stable external environment, that is, when the oscillation frequency

Web console Service management Presentation Layer

Application Layer

Authenticatio

n

LDAP

OAuth 2.0

Wiki

BBS

GitL ab

Nexus

Swift

NFS

Knowledge Sharing Storage

Management Layer

Kubernetes

Docker resource pool

Resource Layer Servers Network Storage Compute

Distributed Processing System

88

of the oscillator of the device clock part cannot be observed, the clock model of the node can be

converted into a linear model according to equation (2) to change the relationship.

  tt)((2)

where a is the clock skew that determines the rate at which the clock is running, and β is the

clock rate that indicates the hardware clock skew.

4. Test Results and Analysis of Logical Clock-Based Distributed Resource Management and

Platform Deployment

4.1. Delayed Testing of Service Deployment

Data file sizes are 0, 50 MB, 100 MB, 500 MB, and 1 GB. Four datasets are included with

different data file sizes. During testing, the deployment performance delay between the system and

Ansible is shown in Table 2.

Table 2. Latency test results for service deployment

data size 0 50MB 100MB 500MB 1GB

Ansible(s)

6.1 7.8 15.3 42.31 90.25

6.4 7.6 15.2 43.21 92.36

6.2 6.9 15.4 45.03 93.45

5.9 7.2 14.9 43.36 89.67

Deploy Platform(s)

0.19 0.64 5.26 23.62 54.35

0.17 0.68 5.43 24.35 53.45

0.16 0.62 5.37 21.36 55.21

0.16 0.69 5.18 23.45 54.36

Distributed Processing System

89

Figure 2. Service deployment average latency test results as data size changes

It can be seen from Figure 2 that when the data increases significantly, the time used by the

program also increases, especially when the data changes from 500MB to 1GB.

4.2. Delay Test of Service Unloading

After each deployment is completed, we will also perform the corresponding uninstallation tasks,

so that the subsequent deployment tasks can run smoothly, and count the delay of each

uninstallation task. Here, 4 sets of data are selected, as shown in Table 3.

Table 3. Latency test results for service offload

Data size 0 50M 100M 500M 1G

Ansible(s)

4.2 3.7 3.6 4.2 4.6

3.2 3.5 3.8 4.1 4.5

3.3 2.9 3.4 3.8 4.8

3.2 3.8 3.9 3.9 4.7

Deploy Platform(s)

0.052 0.053 0.062 0.089 0.112

0.044 0.047 0.069 0.094 0.154

0.046 0.062 0.068 0.087 0.167

0.045 0.055 0.067 0.091 0.128

As can be seen from Figure 3, the size of the data does not have much impact on the latency of

offloading services, but the overall efficiency of the resource management and distributed system

development platform is higher than that of Ansible. In general, resource management and

distributed development platforms perform well in terms of latency performance, so distributed

system resource management and deployment platforms have good performance while fulfilling

their own functional requirements.

0

10

20

30

40

50

60

70

80

90

100

0 50MB 100MB 500MB 1GB

d
el

ay
/s

data size

Ansible Deploy Platform

Distributed Processing System

90

Figure 3. Service offload average latency test results as data size changes

5.Conclusion

A distributed process tree method is proposed to manage the network connected between devices,

and on this basis, the real-time synchronization of source data and the interaction of data are

considered. At the same time, synchronous resource management combines subscription/push

resource data to synchronize only the required data changes in real time, and quickly respond to

resource data changes under limited communication constraints. Aiming at the general resource

management platform of the Internet of Things and the intelligent transmission scenario proposed,

the solution and implementation of the general resource management platform to realize the

platform architecture of the Internet of Things are given. Through performance comparison, it

shows that the platform is efficient and timely in data management and programming.

Funding

This article is not supported by any foundation.

Data Availability

Data sharing is not applicable to this article as no new data were created or analysed in this

study.

Conflict of Interest

The author states that this article has no conflict of interest.

References

[1] Hoff J R. Conflux--An Asynchronous Two-to-One Multiplexor for Time-Division Multiplexing

and Clockless, Tokenless Readout. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 2019, PP(99):1-13.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50M 100M 500M 1G

d
el

ay
/s

data size

Ansible Deploy Platform

Distributed Processing System

91

[2] Bagchi S. Design and topological analysis of probabilistic distributed mutual exclusion

algorithm with unbiased refined ordering. Future Generation Computer Systems, 2019,

95(JUN.):175-186.

[3] Schwenkreis F. A Logical Clock Based Discovery of Patterns. International Journal of Data

Science and Analysis, 2021, 7(4):98-108.

[4] Pozzetti T, Kshemkalyani A D. Resettable Encoded Vector Clock for Causality Analysis With an

Application to Dynamic Race Detection. IEEE Transactions on Parallel and Distributed

Systems, 2021, 32(4):772-785.

[5] Drozd O, Nowakowski G, Sachenko A, et al. Power-Oriented Monitoring of Clock Signals in

FPGA Systems for Critical Application. Sensors, 2021, 21(792):1-17.

[6] Kirichenko A F, Vernik I V, Kamkar M Y, et al. ERSFQ 8-bit Parallel Arithmetic Logic Unit.

IEEE Transactions on Applied Superconductivity, 2019, PP(99):1-1.

[7] Gamayani U, Calista C, Ong A, et al. Cognitive Examination In Thalassemia Patients. The

Open Psychology Journal, 2020, 13(1):95-100.

[8] Hameed M, Shakor H. Design and Implementation of Low Power Clock GatingTechnique in 16

bit ALU Circuit. Journal of Engineering and Applied Sciences, 2018, 13(9):2767-2772.

[9] Danielsson P, Postema T, Munir H. Heroku-Based Innovative Platform for Web-Based

Deployment in Product Development at Axis. IEEE Access, 2021, PP(99):1-1.

[10] Wirasinghe C, Perera S, Ganepola D, et al. Frugal development and deployment of an

innovative mobile health platform for COVID-19 in Sri Lanka: the case of SelfShield app. BMJ

Innovations, 2021, 7(4):604-608.

[11] Iyer S. Automata processing in reconfigurable architectures: in-the-cloud deployment,

cross-platform evaluation, and fast symbol-only reconfiguration. Computing reviews, 2020,

61(2):69-69.

[12] Galanis I, Anagnostopoulos I, Nguyen C, et al. Efficient Deployment of Spiking Neural

Networks on SpiNNaker Neuromorphic Platform. Circuits and Systems II: Express Briefs,

IEEE Transactions on, 2020, PP(99):1-1.

[13] Kim B. Big Data Platform Case Analysis and Deployment Strategies to Revitalize the Data

Economy. Jouranl of Information and Security, 2021, 21(1):73-78.

[14] Santiago G V, Alvares A J. Deployment framework for the Internet of water meters using

computer vision on ARM platform. Journal of Ambient Intelligence and Smart Environments,

2020, 12(1):35-60.

[15] Pedersen A, Valla M, Bofin A M, et al. FastPathology: An open-source platform for deep

learning-based research and decision support in digital pathology. IEEE Access, 2021,

PP(99):1-1.

[16] Aloi G, Fortino G, Gravina R, et al. Simulation-driven platform for Edge-based AAL systems.

IEEE Journal on Selected Areas in Communications, 2020, PP(99):1-1.

[17] Hernandez M P, Mcfarlane D, Parlikad A K, et al. Relaxing Platform Dependencies in

Agent-Based Control Systems. IEEE Access, 2021, PP(99):1-1.

[18] Sousa B M, Fonseca V, Cordeiro L, et al. EMPATIA: A Multichannel Platform for

Participatory Budgeting. International Journal of Electronic Government Research, 2020,

15(2):58-89.

