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Abstract: With the popularization and rapid development of the Internet, software 

applications have higher and higher requirements on concurrency and service quality, 

which promotes the continuous evolution of the Internet architecture. The rapidly 

increasing user scale and increasingly complex service system lead to the explosive growth 

of concurrent access traffic in the network. This paper mainly studies the application of 

task allocation mechanism based on ACA(ACA) in distributed system. In this paper, a task 

allocation system is constructed based on Master/Slave architecture, and a task allocation 

mechanism based on ACA is designed and implemented. By optimizing the resource 

allocation of workflow, the completion time of workflow is minimized. The simulation 

results show that ACA can improve the efficiency of task allocation. 

1. Introduction 

With the rapid development of computer and information technology and its deep integration 

with traditional technologies of various industries, a large number of complex systems characterized 

by distributed, open and intelligent have emerged. The distributed intelligent systems with the 

characteristics of distribution, connectivity, collaboration, openness, fault tolerance, independence 

and so on. DIS has attracted more and more attention from academia and business circles, and has 

become a new research hotspot [1-2]. At present, distributed Artificial Intelligence (DAI) provides 

an effective way for DIS implementation, and Multi-Agent systems (MAS) technology is one of the 

two important research branches in the field of DAI. It provides technical support for large-scale 

DIS analysis, design and implementation, and is widely used in many fields of DIS. Cooperation 

mode is an important part of multi-task cooperation mechanism. In view of the fact that a member 

of DIS with limited ability or resources has to negotiate and cooperate with other members of the 

system to form a cooperative alliance to complete the task that cannot be completed by itself [3-4]. 

Through collaboration alliance, tasks that cannot be completed by a single member can be 



Distributed Processing System 

43 
 

completed, and resource allocation can be adjusted to complete the established tasks with optimal 

resource allocation and efficiency, and maximum benefits can be obtained. Therefore, alliance is the 

main way to achieve multi-task cooperation in DIS. Therefore, in order to successfully realize 

multi-task cooperation in DIS, it is very necessary to establish corresponding cooperative alliance 

mechanism (including resource allocation mechanism, trust mechanism, decision evaluation 

mechanism, utility division mechanism, etc.) [5]. 

At present, the traditional optimization algorithms (such as analytical method and numerical 

analysis method) are often faced with the situation that the solution time is long, the solution 

accuracy is low, and even the solution cannot be solved when solving the multi-task resource 

allocation problem. The intelligent optimization algorithm overcomes the limitation of the 

traditional optimization algorithm in solving the problem with high condition requirements, and the 

search process of the algorithm does not depend on the specific information of the search problem, 

and has the characteristics of low computational complexity, which has been highly concerned by 

researchers at home and abroad [6]. For example, particle swarm Optimization (PSO) has simple 

coding, no mutation, crossover and other operations in genetic algorithm, low algorithm complexity, 

easy implementation, and need to adjust fewer parameters, so it has been widely used in many fields 

[7]. However, in the process of optimization and solution, PSO algorithm has a fast convergence 

rate in the early stage, and is prone to fall into local optimality in the later stage, which is not well 

solved [8]. 

In this paper, the task allocation mechanism of ACA is introduced into the task allocation of 

distributed system, which provides theoretical guidance for the research on the mechanism issues of 

resource allocation, decision evaluation and utility division of multi-task cooperation in complex 

DIS. It has important theoretical significance and application value. 

2. Task Allocation Modules and Algorithms in Distributed Systems 

2.1. Task Distribution System 

In this paper, the whole system is divided into the following modules: Clients that accept user 

requests, RoseDeployer that deployer and manages containers based on scheduling solutions, 

Scheduler, Docker, and Resource Pool that has all Resource information of the service cluster. 

This part adopts the Master/Slave architecture, RoseDeployer takes the Master and RoseHost 

takes the Slave. RoseDeployer is responsible for the management of all rosehosts in the cluster. 

RoseHost is responsible for the management of various resources on its host nodes, container start 

and stop, resource usage collection, etc. [9-10]. 

(1) RoseDeployer module 

RoseDeployer is the core of the entire resource scheduling system. RoseDeployer manages all 

tasks and is responsible for the management of all rosehosts in the cluster, as well as the 

management of Dockers on Rosehosts. As shown in Figure 1, RoseDeployer consists of three parts: 

TaskManager, DockerManager and HostManager, which are responsible for managing sub-modules 

of different dimensions. The TaskManager accepts and manages tasks submitted by users, and 

deploys and schedules tasks accordingly. The DockerManager is responsible for managing all 

containers for the cluster, including container start, stop, and migration. HostManager manages all 

RoseHost hosts in the cluster [11-12]. RoseDeployer allocates resources to user tasks based on user 

requests and certain resource allocation and scheduling algorithms. 
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Figure 1. RoseDeployer module 

 

RoseDeployer collects all the information of RoseHost in the cluster, including the total resource 

amount of RoseHost, used resource amount, remaining resource amount, and resource amount 

occupied by each Task [13-14]. 

RoseDeployer is responsible for: 

Receives the scheduling scheme generated by the scheduler. 

Execute corresponding tasks based on the scheduling scheme and deploy them to the 

corresponding RoseHost and Docker. 

Maintain the resource pool and update data in the resource pool in a timely manner. 

Manage RoseHost and containers of RoseHost in a cluster. Managing RoseHost includes 

maintaining the heartbeat of RoseHost and collecting the status of RoseHost. Managing containers 

of RoseHost includes starting, stopping, and migrating containers. 

(2) RoseHost module 

RoseHost manages a single node. RoseHost has the following responsibilities: RoseHost directly 

manages the resource allocation of this host, starting and stopping containers, and collecting 

resource usage. RoseHost manages containers on the host through Decker Daemon, including 

mirror pull, container start and stop, resource allocation, and resource isolation. 

RoseHost consists of two parts, DockerManager and RoseHostInfo. The DockerManager accepts 

the commands from RoseDeployer and manages the container directly through the Docker Daemon 

on the host. RoseHostInfo manages the parts that are relevant to the host itself, such as the 

collection of resource usage. Figure 2 shows the RoseHost module diagram. 
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Figure 2. RoseHost module 

2.2. ACA for Task Problems 

The ant colony optimization algorithm designed in this paper consists of five key parts :(1) 

definition of heuristic function; (2) Definition of pheromone; (3) state transition probability; (4) The 

definition of pheromone update rules; (5) Local search strategy. In the design process of ant colony 

optimization algorithm, we call the assignment of task I to physical machine j a quest, which is 

represented by the symbol S(I, j), and on this basis, we discuss the design of the above five parts in 

detail. 

(1) Definition of heuristic function 

In this paper, a matrix η is used to store the value of the heuristic function. Each column of the 

matrix corresponds to a different task, and each row corresponds to a different physical machine. 

The variable ηij in the matrix η, <s:3> represents the elicitation function value of each inquiry 

S(I,j).</s:3> The value of ηij can provide an important basis for the state transition of ants. The 

larger the value of the heuristic function on a search, the better the search is, and the greater the 

probability of ants choosing this search. In the process of ant solving, the value of heuristic function 

can be divided into static calculation and dynamic calculation according to different requirements. 

Static calculation is to evaluate the value according to specific factors, and only need to calculate 

once. Static calculation can reduce the operation time of the algorithm, but it is difficult to find the 

optimal solution when dealing with the large-scale task allocation problem. Dynamic calculation of 

the solution can be got by has to take the next search heuristic function value, it needs to be in the 

process of solving each find inspiration function to calculate, so compared with the static 

calculation, the dynamic calculation of operation for a long time, but the dynamic calculation in 

solving large scale task allocation problem, High-quality solutions can still be found [15-16]. 

Therefore, this paper will use dynamic calculation to find out the heuristic function value of each 

quest. 

In the task allocation problem studied in this paper, a heuristic for searching S(I, j) is directly 

related to the execution time and the earliest and latest end time of the task I on physical machine J. 

In traditional ACA, due to the positive feedback of ant colony, the heuristic information of an ant 

choosing a route is inversely proportional to the length of the route, that is, the longer the route, the 

smaller the heuristic information. Therefore, in this paper, the latest end time UETij of task I on 

physical machine j is calculated first when calculating the heuristic function value. And then find 
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out all executable task I physical machine, the task I of the end time of the latest maximum Max ܷ   

finally, according to the absolute value of the difference and explore the S (I, j) heuristic function 

value, computation formula is as follows: 

1max ,, 


jisi
s

ij UETUET


    (1) 

(2) Pheromone definition 

After defining the heuristic function, it is necessary to define a suitable pheromone for ACA. In 

ACA, the pheromone value and the heuristic function value together constitute the solution 

construction process. In the process of ACA, pheromone and heuristic function jointly determine 

the selection probability of an ant. In the process of solving ACA, the pheromone value is not static, 

but a dynamic global variable, which directly reflects the size of the empirical information retained 

in each exploration in the iterative process, and also reflects the learning ability of ants [17]. In this 

case, pheromones are indicators of an ant's tendency to choose a quest, and how good the quest is. 

In this study, a matrix τ is used to store the pheromone values, whose columns represent each task 

and rows represent each physical machine. The value τij of the matrix represents the pheromone 

value of searching S(I,j). 

(3) State transition probability 

Each ant starts the process of building a solution with a set of all the tasks to be assigned and a 

list of candidate physical machines. It then assigns each task one by one to the most appropriate 

physical machine at the moment. The process of assigning tasks to ants is carried out by a state 

transition rule. This probability rule reflects how likely a quest is to be chosen by the ant. The state 

transition rules of ants are mainly determined by two factors, which are the value of pheromone on 

S(I,j) and the value of heuristic information on S(I,j). In the current study, there are various methods 

to combine these two factors to solve the state transition probability value. The state transition 

probability of an ant K choosing to assign task j to physical machine I is: 
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In the equation, ωb (j) represents the set of tasks suitable for assignment to physical machine j. 

(4) pheromone update rules 

In the process of ant searching for the optimal solution, as the concentration of pheromone on the 

existing solution increases gradually, the influence of heuristic information in the state transition 

formula will be less and less, which will reduce the accuracy of obtaining the optimal solution. 

Therefore, in the process of ant colony solution construction, pheromones in the global optimal 

solution and the optimal solution of the current iteration need to be updated in order to avoid the 

algorithm falling into the local optimal solution due to too fast convergence speed. These 

characteristics are an embodiment of the learning function of ACA [18]. In ACA, ρ is generally used 

to reflect the rate of pheromone volatilization, the size of the pheromone volatilization rate ρ 

directly affects the convergence and global search ability of ACA. When the value of ρ is not 0, 

because of the volatile effect of pheromone, the pheromone on the solution which has not been 

traversed will approach to 0 in the large-scale task processing, which leads to the reduction of the 

global search ability of the algorithm. When the value of ρ is too large, the possibility of the ant 

choosing the traversed solution again will increase, which will also lead to the reduction of the 

global search ability of the algorithm. When the value of ρ decreases, the global search ability and 

randomness of the algorithm will be improved correspondingly, but the convergence speed of ants 
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seeking the optimal solution will also be reduced. 

After each iteration, in order to make the pheromone in the existing solution not have too much 

influence on the future solution, the following formula is used in this paper to volatilize the 

pheromone: 

jiji ,, )1(      (3) 

(5) Local search 

A large number of studies on meta-heuristic algorithms show that the quality of solutions can be 

effectively improved by combining local search algorithms in the process of solving. Many 

experiments on ACA also prove this point, adding local search strategy to ACA can also 

significantly improve the quality of solutions. Therefore, this paper uses a hill-climbing algorithm 

as a local search strategy to improve the quality of the solution obtained at each iteration. 

The hill-climbing algorithm is a cycle of continuous progress towards a better solution according 

to the neighboring peaks. When it reaches a highest peak, it terminates. At this time, there is no 

better solution than the "peak value" nearby. The algorithm is executed by starting at the current 

peak and comparing it to nearby peaks. If the compared peak is larger, it will be regarded as the 

highest peak, so as to reach the highest peak. It goes through several cycles until it finds the highest 

point. The hill-climbing algorithm can effectively avoid global traversal, and use heuristic 

information to select some nodes, which improves the overall efficiency of the algorithm. 

3. Experimental Simulation 

The simulation experiment designed in this paper is mainly to verify the feasibility of the 

negotiation model and algorithm in the task planning process of the proposed multi-agent system. 

The simulation computing platform is a common desktop computer, and multithread programming 

method is used to simulate the operation of the distributed system. The system configuration is 

shown in Table 1. The CPU is Intel Core I5-10400, the memory is 8G, the operating system is 

Windows10, and the planning program is implemented by Java language program. In order to verify 

the effectiveness of our experimental model and algorithm, we introduce the credit mechanism and 

task allocation strategy into the model, and divide the experiment into two parts. One part is to 

reflect the effectiveness of the model by comparing the time to complete the task with the increase 

of distributed system when the number of tasks is the same. The other part is to reflect the 

effectiveness of the model by comparing the time to complete tasks when the distributed system is 

the same and the number of tasks increases. 

Table 1. System configuration information 

Type Configuration 

CPU Intel Core i5-10400 

Memory 8G 

Operating system Windows10 

Development of language Java 

4. Analysis of Experimental Simulation Results 

In Experiment 1, the number of tasks was 500. As the number of agents changed, the comparison 

results of ACA and particle swarm optimization algorithm were shown in FIG. 3. It can be seen 

from the figure that when the number of tasks is unchanged, with the increase of the number of 
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agents, the ant colony proposed in this paper takes less time to complete the task than the traditional 

particle swarm optimization algorithm, and the effect is more obvious with the increase of the 

number of distributed systems. 

 

Figure 3. The distributed system counts the different running time comparison 

In Experiment 2, all experimental environments and equipment are the same as in Experiment 1, 

and the number of distributed systems is set as 30. With the change of the number of tasks, the 

comparison results between ACA and particle swarm optimization are shown in FIG. 4. It can be 

seen from the figure that when the number of distributed systems is unchanged, with the increase of 

the number of tasks, the ACA proposed in this paper takes less time to complete the task than the 

traditional particle swarm optimization algorithm, and with the increase of the number of tasks, the 

effect is more obvious. This shows that the approach presented in this chapter is more suitable for 

large-scale task set environments. 

 

Figure 4. Comparison of different running times of task count 
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5. Conclusion 

In this paper, a distributed system resource scheduling management system based on Docker 

container is designed and implemented. Through this system, users can realize efficient 

management of cluster and container applications. An ACA is designed and implemented to obtain 

the approximate optimal solution. Aiming at the characteristics of order and dependence among 

tasks in the workflow in this study, a heuristic information based on Ultimate End Time (UET) of 

tasks is designed for the ACA used. In addition, in order to prevent the algorithm from falling into 

the local optimal solution, a local search algorithm is designed to improve the quality of the current 

solution combined with the hill-climbing algorithm. Finally, the experiment proves that ACA can 

effectively improve the task allocation efficiency of workflow. 
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