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Abstract: Integrated Energy System (IES) is the development direction of energy 

consumption in the future. Through the coordinated design and planning of energy systems 

such as electricity, cooling, and heat, energy utilization can be effectively improved and the 

development of renewable energy units can be promoted. The purpose of this paper is to 

predict the short-term load of an integrated energy system in a multi-station fusion scenario 

based on a robust model. Convex Quadratic Loss Functions to Suppress Negative Effects 

of Outliers Non-convex Quadratic Loss Functions limit the maximum loss penalty for 

outliers. First, the loss function is expressed as the difference of two quadratic functions, 

and the corresponding robust model is built. Second, the optimization problem 

corresponding to the robust model is transformed into a system of linear equations using 

the CCCP technique and KKT conditions. Finally, the prediction accuracy of RLS-SVR 

model, SVR model and BP neural network model is compared. The results show that for 

cooling load prediction, the average relative error of the prediction model constructed by 

RLS-SVR is 1.05% and 1.12%, which is lower than other models. 

1. Introduction 

Energy is the basic substance for the survival and development of human society, which is 

related to the foundation and economic life of the country, and plays an important strategic role in 

the rapid development of the country. Energy is a function of society, and with the development of 

renewal, the dependence on energy is getting stronger and stronger [1]. However, at present, with 

the rapid development of social production, causing traditional fossil energy to face problems such 

as excessive abuse and reduction of reserves; and traditional energy systems mainly rely on fossil 

fuels, high energy consumption brings many environmental problems, especially climate In addition, 

in the current traditional energy supply areas, various energy systems are not related to each other, 

resulting in ineffective and waste of energy [2]. 
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Due to the differences in the level of science and technology and national conditions, the 

starting time and focus of research on robust models are different in countries around the world. 

Albrecht S proposed a powerful MPC idea that could add uncertainty to existing knowledge about 

attacks. To this end, a new method is proposed to detect unknown attacks in inefficient systems, 

combined with a multi-level robust MPC system. Numerous case studies of non-distributed systems 

demonstrate the potential of this approach [3]. Kobayashi Y developed a robust model to predict the 

adsorption behavior of U(VI) on ferrihydrite under several environmental conditions. The surface 

U(VI) particles that dominate ferrihydrite are usually internal twins. However, previous complex 

surface models were unable to predict U(VI) visibility due to the lack of sufficient macroscopic 

adsorption data records to account for complex surface reactions. U(VI) adsorption data at 10 nM 

U(VI) concentration were obtained in NaNO3 solution with/without CO2 air at high pH, ionic 

energy and concentration. Newly determined adsorption data from direct and indirect luminescence 

measurements of U(VI) hydroxyl groups were used to determine the stoichiometric and equilibrium 

parameters of adsorbed U(VI) reactivity. The model can also predict properties under multiple 

solution conditions based on previous optical observations [4]. Gilanifar M proposes an enhanced 

MTL algorithm for Bayesian Spatiotemporal Gaussian Process (BSGP) models to characterize 

groups of distinct regions. It assumes the impact of environmental and traffic conditions on fires to 

improve short-term load forecasting. Additionally, a Low Waste Disposal Model (LRDM) is 

presented to demonstrate the effectiveness of the approach using real-time case studies from two 

residential companies in Tallahassee, Florida. Compared to other MTL systems, the proposed 

method goes beyond performing image prediction and compliance enforcement to provide 

knowledge transfer between communities [5]. The methods used in the above literature are all based 

on historical load data, and the prediction error is relatively large for the actual site load forecasting. 

It is of great significance to build an integrated power system. Accurate load forecasting has a 

positive impact on the overall design, operation, control and utilization of power systems, and is a 

key technology to promote the development of energy products. However, there are few studies on 

load system capacity prediction. On the one hand, the research of integrated energy system is also in 

the developing stage. On the other hand, the energy composition of the integrated power system is 

more diverse. There is a mixed relationship between different burdens. The problem presented to us 

is that it is difficult to find a breakthrough in the characteristic load forecasting. 

2. Research on Short-term Load Forecasting of Integrated Energy System in Multi-station 

Fusion Scenario Based on Robust Model 

2.1. Robust Model 

(1) Model uncertainty description 

Uncertainty dynamic models are the basis of robust control theory. Some real parameter values 

in these uncertainty models cannot be accurately described, but the changing laws of these 

parameter values can be known [6-7]. The traditional robust controller is designed based on a linear 

dynamic model, which describes the dynamic process along a nominal steady-state operating point, 

and the uncertain part of the model is supplemented by the uncertain model parameters, which fully 

explains the standard. Call the difference between a linear model and a real process. These uncertain 

dynamic models are often referred to as robust models or uncertain state-space models [8-9]. 

(2) Linear matrix inequality 

Linear matrix inequalities play a key role in the framework of robust control theory. It is a very 

efficient computational tool in dealing with a variety of matrix-variable problems that arise in 
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systems and control theory, using analytical or frequency-domain-based methods to transform the 

problem into a linear ( or affine) finite set matrix inequality constraints for convex optimization 

problems [10-11]. Benefiting from the progress of interior point optimization problems, convex 

optimization problems including LMI are now more tractable, which are characterized by high 

accuracy and high efficiency [12-13]. 

2.2. Primitive Space Support Vector Machine 

The standard support vector machine model is a quadratic programming problem with 

inequality constraints. When introducing support vector machines, most literatures usually solve the 

dual optimization problem by introducing a function to get the optimization problem in the dual 

space. The constraints in the dual problem are easier to deal with in form and the nonlinear mapping 

in the dual problem can be implicitly represented by a kernel function, so that the kernel function or 

kernel matrix can be directly used in the solution to participate in the operation [14-15]. In recent 

years, with the deepening of the research on the original space optimization problem, a large 

number of literatures point out that the support vector machine can directly solve the original space 

optimization problem. The corresponding optimization problem must be transformed into an 

unconstrained optimization. This problem is solved by classical unconstrained optimization 

algorithms such as Newton's method, vehicle joint gradient method, etc. [16-17]. 

2.3. Short-term Forecast of Multiple Loads in the Integrated Energy System 

Therefore, before using the model for prediction, the original data should be analyzed in detail, 

and the information contained in the data should be fully explored suitable input vector. Moreover, 

there are many influencing factors of multiple loads in the integrated energy system, which have a 

great influence on the load fluctuation. Therefore, it is necessary to do a correlation analysis 

between the load and the influencing factors, and select the appropriate influencing factors. In the 

selection of prediction models, a model with strong nonlinear mapping ability should also be 

selected for prediction [18]. 

3. Model Construction for Investigation of Short-term Load Forecasting of Integrated Energy 

Systems in Multi-station Integration Scenarios 

3.1. Data Preprocessing 

Before load forecasting, it is necessary to preprocess the sample data, including data 

normalization and correction of abnormal data. Due to the interference of the data acquisition 

device, some abnormal values are usually generated. These dimension values are significantly 

different from normal values. If used to model a model without features, it will negatively affect the 

predictive model, thereby reducing the accuracy of the prediction. Due to the different dimensions 

and value ranges of different input features, directly using the original data for model training may 

have poor prediction effect. Therefore, it is necessary to normalize the features in the data set before 

making predictions. 

3.2. The Steps of Ies Multi-load Short-term Forecasting 

The forecasting model is selected first, and the input and output vectors are determined 
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according to the characteristic analysis and actual demand. The general steps are shown in Figure 1. 

 

Figure 1. IES multi-load short-term forecasting steps 

3.3. RLS-SVR Solution and Algorithm Implementation 

Based on the non-convex quadratic loss function, the following robust model is established: 
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Finally, according to the KKT condition, the regression decision function is obtained: 
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4. Analysis and Research in Multi-station Fusion Scenario Based on Robust Model 

4.1. Comparison of Prediction Accuracy 

In order to more intuitively evaluate the advantages and disadvantages of the three models, the 

average relative error, the maximum relative error and the root mean square difference are used as 

the measurement standards to predict the multivariate load in the next three days. , Figure 2 is the 

cooling load prediction error. EMAPE is the mean relative error, EMAX is the maximum relative 

error, and RMSE is the root mean square error. M1 is the RLS-SVR model, M2 is the SVR model, 

and M3 is the BP neural network model. 
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Table 1. Electric load prediction error 

Date type 
Emape(%) Emax(%) Rmse(%) 

M1 M2 M3 M1 M2 M3 M1 M2 M3 

Working day 1.04 1.23 1.56 2.25 3.12 3.64 0.44 0.54 0.87 

Off day 1.13 1.57 1.89 2.42 3.12 4.21 0.34 0.45 0.56 

 

As shown in Table 1, for power load forecasting, the average relative errors of the RLS-SVR 

forecasting model are 1.04% and 1.13%, the maximum relative errors are 2.25% and 2.42%. 

 

 

Figure 2. Cooling load prediction error 

As can be seen from Figure 2, for the prediction of cooling load, the average relative errors of 

the prediction models constructed by RLS-SVR are 1.05% and 1.12%, the maximum relative errors 

are 2.76% and 3.14%. Through the comparison of the above data, it is further proved that the 

RLS-SVR model has certain practical value for the high precision of summer multivariate load 

forecasting. 

4.2. Stability Test of RLS-SVR Model 

In addition, in order to further test the stability of the RLS-SVR model, the electric load and 

cooling load in one week were predicted respectively, and the average relative error EMAPE, the 

maximum relative error EMAX and the root mean square error RMSE were used as the evaluation 

criteria. The specific analysis results are shown in the table 2. 
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Table 2. One week electric load forecast error 

Date Monday Tuesday Wednesday Thursday Friday Saturday Sunday Average 

Emape(%) 1.21 1.17 1.01 1.15 1.16 1.17 1.21 1.15 

Emax(%) 2.87 2.64 2.54 2.41 2.63 2.74 2.52 2.62 

Rmse/kw 0.61 0.59 0.54 0.48 0.54 0.37 0.34 0.50 

It can be seen from Table 2 that for the electrical load, the average prediction error within a 

week varies from 1.01% to 1.21%, the maximum prediction error varies from 2.41% to 2.87%. 

Changes in the range of ~0.54kW, the average of the three above are 1.15%, 2.62% and 0.50kW in 

one week, respectively. 

 

Figure 3. One-week cooling load forecast error 

As can be seen from Figure 3, for the cooling load, the average prediction error within a week 

varies from 1.12% to 1.34%, the maximum prediction error varies from 3.14% to 3.85%. Changes 

in the range of ~0.94kW, and the average values of the above three in one week are 1.25%, 3.42% 

and 0.78kW respectively; through the above analysis, it can be seen that the RLS-SVR model 

proposed in this paper has better performance in predicting the multiple loads in the next week. 

good stability. 

5.Conclusion 

This paper proposes a robust model-based short-term load forecasting in the multi-station 

fusion scenario. From the perspective of power management, many loads in the future can be 

effectively predicted by accumulating and analyzing numerous loads of an integrated power system, 

and by modeling and learning the internal relationships and external factors of loads. Subsequent 
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system planning and scheduling are of great significance. 
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