
Scholar Publishing Group

Distributed Processing System

https://doi.org/10.38007/DPS.2020.010405

ISSN 2790-0916 Vol. 1, Issue 4: 33-40

Copyright: © 2020 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

33

State Consistency Algorithm for Peer to Peer Distributed

Systems Based on Data Mining

Seyyed Babak Alavi
*

Univ Cincinnati, Cincinnati, OH 45221 USA

*
corresponding author

Keywords: Data Mining, Distributed System, State Consistency, Vector Clock

Abstract: In recent years, with the continuous development of network and information

technology, the distributed system has replaced the centralized architecture and become the

focus of researchers. Consistency is a basic and complex problem in the implementation of

distributed systems. This paper mainly studies the state consistency algorithm of

peer-to-peer distributed system based on DM(DM). This paper first summarizes the types

of DM algorithms. In order to achieve high throughput, low latency and high availability at

the same time as possible, this paper designs a VC algorithm for state machine replication,

and this paper makes a quantifiable performance analysis of the consensus protocol from

the four aspects of cluster fault tolerance, communication cost and election cost.

1. Introduction

In recent years, the coordinated control problem of multi-agent systems has been widely

concerned by relevant researchers. With the development of science and technology and the gradual

advancement of social demand, the scale of control system is getting larger and the complexity of

control system is getting higher and higher. Under such a trend, the traditional centralized control

method is increasingly difficult to meet the needs of control tasks under the new situation [1].

Centralized control relies on the communication between the central node and all other nodes in the

network. When the number of nodes in the network is large or the data to be communicated is large,

the communication cost of the network and the calculation burden of the central node will be

greatly increased. Moreover, the robustness of centralized control is not ideal. In order to improve

the above problems in the centralized control system, researchers have proposed the distributed

control method, and carried out in-depth and extensive research. Unlike centralized control,

distributed control does not require a central node (central controller). The distributed controller

designed for each individual only needs to use the information of the individual itself and its

neighbor agents with communication connection, that is, the control only uses the local information

without the global information of the whole multi-agent system. The tasks of distributed

Distributed Processing System

34

coordination control of multi-agent system usually include consistency, aggregation, formation and

coverage [2-3]. Compared with centralized control, distributed control has the advantages of low

communication cost, good scalability and strong robustness. Based on the above advantages, under

the background of the rapid development of network computer technology, the distributed

coordinated control technology of multi-agent system has been widely used in many fields such as

multi robot system collaborative assembly, sensor network source point positioning and multi

aircraft / multi mobile robot formation [4].

Consistency is a basic problem in the field of distributed coordinated control of multi-agent

systems [5]. Consistency means that each agent can reach agreement on a certain state variable

through mutual coordination by designing a reasonable communication protocol, such as position,

speed and attitude [6]. In fact, aggregation, formation and coverage can be seen as an extension of

the consistency problem. Researchers have invested a lot of time and energy in the unification of

multi-agent systems and have achieved a wealth of research results. A scholar has established the

consistency control design scheme of the first-order integrator multi-agent system [7]. For

continuous time and discrete-time first-order multi-agent systems with different topologies, a team

studied the consistency control design problem [8]. Some experts designed a consistency protocol

for the second-order integrator multi-agent system under the condition that the relative speed cannot

be measured directly and the output is saturated [9]. In addition to the above theoretical research

results, researchers have also made fruitful research results in the application design of multi-agent

systems. Typical applications include multi Euler Lagrangian systems (such as robotic arms, aircraft,

underwater robots), multi nonholonomic systems (such as multi mobile robots) [10].

Although the consistency control based on distributed event triggering has made great progress,

there is little research on the state consistency algorithm of peer-to-peer distributed systems using

DM.

2. DM Distributed System State Consistency Algorithm

2.1. DM Algorithm Type

Currently, large DM technology includes many different types of mining algorithms, including

sorting algorithm, clustering algorithm, the correlation rule algorithm, etc. In practical applications,

the selection and use of specific algorithms is mainly determined by the objective objectives to

achieve the predefined data analysis and mining results [11-12].

(1) Classification algorithm

Sorting algorithm is a technology that can find the correlation and difference between a large

number of sample data by sorting the data set, so that the value of the data can be deeply extracted

[13]. Typical classification algorithms mainly include: decision tree algorithm, Bayesian algorithm,

rough set algorithm and fuzzy logic algorithm [14].

(2) Clustering algorithm

This algorithm refers to the algorithmic process of grouping similar and similar data objects into

a large number of data information, so that similar data information is collected and grouped for

DM and calculation [15]. Currently, the clustering algorithm has been applied in many fields such

as society, sports, education and so on. For example, in social economy, data such as national

income, industrial and agricultural output value and per capita consumption can be better clustered

through clustering algorithm to facilitate the evaluation of the overall national economic strength; In

physical education, by clustering the height, strength, speed, vital capacity and other physical

fitness and physiological indicators of athletes, it can better teach the athletes according to their

Distributed Processing System

35

aptitude, develop their strengths and avoid their weaknesses, and give better play to the personal

potential of athletes. At present, the classical clustering algorithms mainly include K-means,

expectation maximization algorithm (EM), single link, complete link, average link and so on [16].

(3) Association rule algorithm

The correlation rule algorithm is mainly used to objectively reflect the internal relationship

between a large number of data through a structured mathematical model. Because large data has

the characteristics of massive, high-dimensional, heterogeneous, dynamic, spatio-time, diversity,

multipurpose, multi-scale and unclear, the inherent correlation between the data is very hidden.

At present, the basic algorithms of association rules mainly include: Apriori algorithm based on

Apriori property to generate candidate sets, FP growth algorithm without generating candidate sets,

etc.

(4) Evolutionary analysis algorithm

The algorithm mainly mines and analyzes the existing data by means of mathematical modeling,

so as to analyze and describe the changes and trends of future data objects, and can be used to guide

and predict future decision-making behavior. At present, the evolution analysis algorithm has also

been widely used in the big DM analysis of various industries. For example, the enterprise can also

use the evolution analysis algorithm to predict the sales volume of its products in the next year, and

formulate the purchase plan and production schedule of raw materials, adjust the inventory strategy

and reasonably allocate sales tasks according to the prediction results [18].

2.2. Distributed Consistency Algorithm

Distributed systems put forward three main requirements for distributed consistency algorithms:

replication in distributed systems has high throughput; Replication across data centers has low

latency; The service has high availability.

In order to achieve high throughput, low latency and high availability at the same time as

possible, we designed a VC algorithm for state machine replication. VC does not need a leader. All

replicas can concurrently propose operation commands at any time. Under normal circumstances,

each operation command can be submitted after one round-trip network message communication

with most replicas. VC separates the consensus protocol from the ordering and execution of

operation commands. All copies can submit operation commands concurrently at any time without

determining the order of operation commands. However, vector clock is used to track and record the

dependency between them. The subsequent playback stage sorts the submitted operation commands

according to dependencies and executes them in order.

Vector clock algorithm is a kind of algorithm used in distributed system to generate partial order

value for each event. The vector clock marks an n-dimensional vector clock on each node, so as to

distinguish the causal relationship between the states of each node and to ensure the order of

operation to a certain extent.

For a distributed system with n nodes, if VI [k] is defined as the time value of node K known to

node i, then the vector clock held by node I is:

)1,...,2,1,0(),],[],...,2[],1[( ninVVVV iiii (1)

In the system initialization phase, the vector clocks of all nodes are initialized as:

)1,...,2,1,0(),0,...,0,0( niVi (2)

Distributed Processing System

36

When the state of node I is updated, the vector clock value on node I is updated:

)0(][][ ddiViV ii (3)

When node i sends a message to node j, it carries its own vector clock VI. node j will compare

and update the received vector clock of node i with its own vector clock:

)1,...,2,1,0(]},[],[max{][ nkkVkVkV jii (4)

Let the vector clocks of nodes I and j in the system be VI and VJ respectively. If there is VI [k]

≤ VJ [k] for ∀ K ∈ (0, 1, 2,..., N - 1), then VI and VJ are said to satisfy the causal relationship VI

→ VJ, representing that the state of node j is newer than that of node I. The vector clock algorithm

records the sequence of each operation in the distributed system, and then can judge the causal

relationship of each node state. The vector clock is used in the distributed consistency algorithm,

which can record the order of submitting the operation commands of each replica, and distinguish

the causal dependency between the operation commands. Each replica concurrently submits

operation commands in disorder, and then executes them according to the causal dependency

between them during playback to ensure the consistency of the status of each replica.

The procedure for executing an VC presence is approximately the following. Each copy retains a

vector clock. When a copy starts a new presence, it is the only supporter in the new presence. It can

skip the preparation phase in Paxos and run the acceptance phase directly. The copy increases its

vector clock, and then sends the raised vector clock to at least most of the copies in the suggested

message. When the copy receives the proposal message, it updates its own vector clock with the

received vector clock, and then, responds to the rapporteur with the updated vector clock in the

acceptance message. When the rapporteur receives the download message, he updates his vector

clock with the received vector clock. After the proposer receives the acceptance message from most

copies, submits the corresponding presence using the current vector clock and then sends the vector

clock along with the commit message to all other copies. When the copy receives the commit

message, it updates the vector clock with the received vector clock, and then submits the

corresponding presence. When a copy is submitted to a presence, will start a playback phase to sort

the operation commands generated by the presence and other relevant operation commands

according to the dependency recorded by the vector watch and execute them in turn.

3. Simulation Experiment

In order to restore the application scenario that the replica state machine is consistent to a certain

extent, the cluster server node is set in the experiment, and the client node that sends requests to the

server is also set outside. After starting the operation, the client node will send a request to the

cluster node; If the node receiving the request is the cluster leader, it will directly initiate the log

resolution; Otherwise, it will reply a message to the client and carry the node ID of the current

cluster leader. After receiving this message, the client will resend the request to the cluster leader

according to the node ID. This indicates that the client node should know the node ID of the cluster

node and the network node. They also need to initially configure the necessary cluster related

information before operation.

Distributed Processing System

37

Figure 1. Experimental network, server and client

This paper uses multiple server nodes on the same network segment to construct a distributed

experimental environment. In order to make the experimental results more general and test whether

the performance of the consensus protocol will be affected by the number of cluster nodes, we

conducted experiments on a cluster composed of 5 nodes, 7 nodes and 11 nodes. The cluster

architecture of the experiment is shown in Figure 1. At the same time, on the network transmission

protocol, we choose to implement the communication between nodes based on TCP protocol; As a

widely used communication protocol, TCP has many mature communication modules that can

complete the packaging and parsing of messages.

Table 1. Cluster node configuration used in the experiment

Configuration items Configuration description

CPU Intel Core i5-9400

Memory size 8GB

Operating system CentOS 7.0

4. Experimental Result

In the experiment, this paper makes a quantifiable performance analysis of the consensus

protocol from three aspects: cluster fault tolerance, communication cost and election cost. The

experimental results are as follows.

Distributed Processing System

38

4.1. Cluster Fault Tolerance

Figure 2. Variation of cluster fault tolerance with unreachable rate

As shown in Figure2, the more the number of nodes in the cluster, the smaller the impact of the

unreachable rate y on the cluster, and the cluster with more nodes reflects a higher cluster fault

tolerance.

4.2. Communication Cost

Table 2. Communication cost comparison

 5 node 7 node 11 node

VC 6.7 6.1 5.9

Paxos 7.8 8.2 7.7

As shown in Table 2, for the two algorithms in clusters with different node numbers, the

communication cost difference of the consensus protocol is small and the value is relatively stable.

4.3. Election Costs

As shown in Figure 3, the leader election process of Paxos may have a greater impact on the

services provided by the cluster. Whenever there is a change of leader in the cluster, Paxos will not

be able to respond to the request message of the external client for a longer period of time, and the

election cost will be higher.

0

5

10

15

20

25

5 10 20 30

F
au

lt
 t

o
le

ra
n
ce

(%
)

Node unreachable rate(%)

5 node 7 node 11 node

Distributed Processing System

39

Figure 3. Comparison of election costs between the two agreements

5. Conclusion

In this paper, based on the consensus of replica state machine in distributed environment, the

distributed consistency algorithm is discussed and studied. A new consensus protocol VC is

designed and implemented. The new protocol VC is designed to ensure the consistency of the

replica state machine in the distributed environment with high network and node failure rate. In

order to explain the detailed design and the principle of VC protocol in detail, this paper introduces

VC protocol in many aspects. The composition of the distributed cluster can be complex and

diverse. Although the existing engineering implementations are based on the design premise of low

failure rate of the network and nodes, the application scenarios with high failure rate in the future

are not excluded. We hope that VC's protocol design can perform better in the distributed

environment with high failure rate after gradual improvement.

Funding

This article is not supported by any foundation.

Data Availability

Data sharing is not applicable to this article as no new data were created or analysed in this

study.

Conflict of Interest

The author states that this article has no conflict of interest.

References

[1] Baresi L, Ghezzi C, Ma X, et al. Efficient Dynamic Updates of Distributed Components

0

1

2

3

4

5

6

7

8

9

5 node 7 node 11 node

E
le

ct
io

n
 c

o
st

Node

VC Paxos

Distributed Processing System

40

Through Version Consistency. IEEE Transactions on Software Engineering, 2017,

43(4):340-358.

[2] Alghamdi M I, Alghamdi M, Almushilah M, et al. Recovery Support for Real-time Distributed

Editing Systems. Journal of Internet Technology, 2020, 19(4):1119-1129.

[3] Katsaros D. Distributed ledger technology: the science of the blockchain (2nd ed.). Computing

reviews, 2018, 59(11):596-597.

[4] Bello A U, Nnakwe M O. An asynchronous inertial algorithm for solving convex feasibility

problems with strict pseudo-contractions in Hilbert spaces. Proceedings of the Edinburgh

Mathematical Society, 2020, 65(1):229-243.

[5] Nikitin V, Andrade V D, Slyamov A, et al. Distributed Optimization for Nonrigid

Nano-Tomography. IEEE Transactions on Computational Imaging, 2020, PP(99):1-1.

[6] Alghamdi M I, Jiang X, Zhang J, et al. Recovery support for real-time distributed editing

systems. Journal of Internet Technology, 2018, 19(4):1119-1129.

[7] Hsu T Y, Kshemkalyani A, Shen M. Causal consistency algorithms for partially replicated and

fully replicated systems. Future Generation Computer Systems, 2017, 86(SEP.):1118-1133.

[8] Bouyakhf E H, Hammoujan S, Benelallam I. Dynamic vs. static agent ordering in distributed

arc consistency. International Journal of Advanced Intelligence Paradigms, 2018, 10(3):266.

[9] [1]Beck, Christopher J. [Lecture Notes in Computer Science] Principles and Practice of

Constraint Programming Volume 10416 || Arc Consistency via Linear Programming. 2017,

10.1007/978-3-319-66158-2(Chapter 8):114-128.

[10] Yan P, Choudhury S, Wei R. A Machine Learning Auxiliary Approach for the Distributed

Dense RFID Readers Arrangement Algorithm. IEEE Access, 2020, PP(99):1-1.

[11] Alanazi E. Arc Consistency for Constrained Lexicographic Preference Trees. IEEE Access,

2020, PP(99):1-1.

[12] Parise F, Gentile B, Lygeros J. A distributed algorithm for average aggregative games with

coupling constraints. IEEE Transactions on Control of Network Systems, 2020, 7(2):770-782.

[13] Arleo A, Didimo W, Liotta G, et al. A Distributed Multilevel Force-Directed Algorithm. IEEE

Transactions on Parallel & Distributed Systems, 2019, 30(4):754-765.

[14] Ferrer M, Gonzalez A, Diego M D, et al. Distributed Affine Projection Algorithm Over

Acoustically Coupled Sensor Networks. IEEE Transactions on Signal Processing, 2017,

65(24):6423-6434.

[15] Jose L, Ibanez S, Alizadeh M, et al. A Distributed Algorithm to Calculate Max-Min Fair Rates

Without Per-Flow State. Proceedings of the ACM on Measurement and Analysis of Computing

Systems, 2019, 3(2):1-42.

[16] Iranpour E, Sharifian S. A distributed load balancing and admission control algorithm based

on Fuzzy type-2 and Game theory for large-scale SaaS cloud architectures. Future Generation

Computer Systems, 2018, 86(SEP.):81-98.

[17] Seshadri K, Mercy S S, Manohar S. A distributed parallel algorithm for inferring hierarchical

groups from large-scale text corpuses. Concurrency, practice and experience, 2018,

30(11):1-18.

[18] Zayyani H, Sari R, Korki M. A Distributed One-bit Compressed Sensing Algorithm for

Nonlinear Sensors with a Cramer-Rao Bound. IEEE Communications Letters, 2017,

PP(99):1-1.

