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Abstract: Existing B-ultrasound images suffer from high noise and low contrast, which can 

easily affect lesion identification accuracy. This paper proposes a B-mode ultrasound video 

image enhancement and automatic detection system based on computer artificial intelligence. 

First, adaptive median filtering and histogram equalization are performed on the original 

video frames to achieve noise suppression and brightness compensation. Secondly, a deep 

feature extraction model based on a convolutional neural network (CNN) is constructed, 

incorporating a multi-scale attention mechanism to enhance the fidelity of edge details in 

target structures. Finally, a segmentation and detection module based on a U-Net architecture 

is designed to automatically locate and accurately segment tumors or critical tissues. 

Experiments were conducted on 500 clinical B-ultrasound video samples. The results 

showed that the proposed system improved the image signal-to-noise ratio (SNR) to 31.3 dB, 

the mean structural similarity index (SSIM) to 0.932, and the mean average precision (mAP) 

of object detection to 93.5%. These results validate the effectiveness and practicality of the 

system for B-ultrasound image visualization and lesion identification. 

1. Introduction 

B-ultrasound is widely used in clinical diagnosis due to its noninvasive, real-time, and low-cost 

characteristics. However, its imaging process is affected by acoustic wave scattering and equipment 

interference, often resulting in strong noise and low contrast. This blurs tissue boundaries and loses 

detailed features, leading to significant subjective reliance and the risk of misjudgment when 

interpreting images. Traditional image enhancement and filtering methods often rely on fixed 

parameters, have limited adaptability to complex tissue textures, and struggle to suppress noise while 

preserving detail. 

Introducing artificial intelligence into B-ultrasound image analysis is of great significance. Deep 

learning models can capture high-dimensional structural information at the feature level, enabling 

automated image optimization and lesion identification, thereby reducing manual intervention and 
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visual errors. Building an enhancement and detection system based on intelligent algorithms not only 

improves the diagnostic visualization of medical images but also provides physicians with more stable 

decision support, advancing traditional ultrasound imaging towards intelligent and refined 

capabilities. 

The system proposed in this study integrates multi-scale feature extraction and attention-focusing 

mechanisms in its structural design, combined with the segmentation and detection approach of the 

U-Net architecture, to achieve efficient coupling of image enhancement and object detection. This 

model maintains its lightweight design while also accommodating the ability to express structural 

details, breaking through the processing bottlenecks of traditional methods for complex tissue images 

and providing a scalable technical solution for the automated analysis of B-ultrasound images. 

2. Related Work 

The quality of medical images directly affects the accuracy of diagnostic results and plays a key 

role in patients' treatment decisions. In order to overcome problems such as imaging noise, uneven 

illumination and loss of details, the research on image enhancement algorithms has been continuously 

deepened. The related work covers multiple directions from improving traditional methods to 

intelligent algorithm modeling. Wang and Wang [1] designed an algorithm for low-light color medical 

image enhancement. The algorithm overcomes the shortcomings of the Retinex algorithm in 

enhancing low-light images and achieves high-quality enhancement of low-light color medical 

images. In order to improve the medical image enhancement effect and effectively retain image details, 

Xu et al. [2] proposed a multimodal rigid medical image enhancement algorithm based on grayscale 

transformation. The proposed algorithm can obtain more satisfactory medical image enhancement 

effects, improve image clarity, and significantly enhance image visual effects. Deng et al. [3] studied 

medical image data enhancement technology. Without significantly changing the appearance of the 

image, they improved the quality of the original image by adding specific pixel compensation and 

making subtle image adjustments, thereby improving the image segmentation accuracy. Shangguan 

and Liu [4] summarized the currently widely used medical image enhancement processing 

technologies, including traditional image enhancement methods, improved image enhancement 

methods, fused image enhancement methods and deep learning methods, and then analyzed and 

summarized the principles, advantages and disadvantages of these methods. Wang et al. [5] proposed 

a multi-loss hybrid adversarial method to search for effective adversarial samples that may deceive 

the network, and added these adversarial samples to the training data to improve the network's 

robustness and generalization ability to unexpected noise perturbations. Dinh and Giang [6] proposed 

a new algorithm to solve image problems simultaneously. The proposed method significantly 

improved the quality of input medical images and also significantly improved the efficiency of current 

medical image synthesis algorithms. Li et al. [7] proposed a passive unsupervised domain adaptive 

medical image enhancement algorithm, which uses test data to adjust and optimize the enhancement 

model in the inference stage. Chen et al. [8] comprehensively outlined MRI image post-processing 

methods based on deep learning to enhance image quality and correct image artifacts. Wu et al. [9] 

proposed a model based on generative adversarial network (GAN), namely, semi-supervised GAN 

with preserved anatomical structure (SSGAN-ASP). Goceri [10] studied enhancement techniques for 

improving the diagnostic performance of different organs (brain, lung, breast, and eye) using different 

imaging modalities based on deep learning. These studies have provided many ideas for medical 

image enhancement, but there are still problems such as the algorithm's strong dependence on specific 

imaging conditions, high model training costs, and insufficient cross-modality adaptability. It is 

urgent to build an efficient and unified enhancement framework that takes into account accuracy, 

stability, and real-time performance. 
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3. Methods 

3.1 Image Preprocessing and Enhancement 

The adaptive median filter suppresses the obvious speckle noise in B-ultrasound video images. 

This noise is a multiplicative noise that produces fine bright spots at the edges of tissue structures, 

interfering with texture judgment. During the processing, the filter size is dynamically adjusted 

according to the statistical characteristics of the local window, and the median and variance of the 

neighborhood of each pixel are calculated. When the image grayscale changes dramatically, a smaller 

window is selected to retain edge details, and the window range is expanded in the smooth area to 

eliminate noise. This method not only improves the overall smoothness, but also maintains the 

continuity of the tissue contour, providing a stable input for subsequent image enhancement and 

feature extraction [11]. The histogram equalization part is used to improve the problem of uneven 

grayscale distribution and low local contrast. Ultrasound images often have brightness attenuation in 

deep tissue areas. To compensate for this problem, the pixel grayscale is remapped according to the 

probability density, and the frequency of occurrence of each grayscale is adjusted by the cumulative 

distribution function, so that the dark grayscale is improved and the bright details are not over-

enhanced. In order to prevent artifacts caused by over-enhancement, the Contrast Limited Adaptive 

Histogram Equalization method (CLAHE) is used to calculate the brightness mapping relationship 

separately in each local area, and set the brightness gain threshold to suppress noise amplification.  

3.2 Feature Extraction and Structural Detail Enhancement 

CNN is used to extract deep features from B-ultrasound video frames and gradually learn complex 

spatial structural relationships through multi-layer convolution operations. The network input is an 

enhanced grayscale frame. The shallow convolution layer focuses on capturing texture and local 

brightness changes, identifying basic morphologies such as tissue interfaces, vascular branches, and 

glandular separations; the middle convolution layer extracts larger-scale spatial relationships, 

reflecting the geometric characteristics and echo distribution patterns of the lesion area; the deep 

convolution layer integrates the information extracted by the previous layer to generate a 

representation with stronger semantic relevance for identifying potential lesion areas. To prevent 

feature degradation or gradient disappearance, the network architecture introduces residual 

connections and normalization operations, so that multi-layer features can be efficiently transmitted 

and maintain spatial consistency. The introduction of the multi-scale attention mechanism aims to 

enhance the expression of edges and subtle structures. This mechanism adaptively weights the high-

response areas in the feature map by combining channel attention and spatial attention, so that the 

structural details in the image are concentratedly expressed [12]. The channel attention component 

extracts channel-level statistical information through global average pooling, and after nonlinear 

transformation, generates a weight vector to guide the network to focus on the importance of features 

at different scales. The spatial attention component utilizes local convolution to capture variations in 

texture distribution and enhance the saliency of structural contours. The multi-scale fusion unit 

weightedly combines features extracted from different receptive fields, preserving shallow high-

frequency texture information while integrating deeper semantic structure. This allows for clear 

distinction of tumor boundaries, tissue texture, and small lesions in the feature space. This process 

enables the network to robustly recognize low-contrast regions and complex tissue structures, 

providing high-resolution, hierarchical feature representations for subsequent U-Net segmentation 

and detection. 

3.3 Detection and Segmentation Model 



International Journal of Multimedia Computing 

55 

The segmentation module of the U-Net architecture is responsible for pixel-level analysis of the 

lesion area. Its structure consists of a symmetrical encoder and decoder. The encoder extracts semantic 

features layer by layer through continuous convolution and downsampling operations, converting the 

texture, morphology, and echo distribution in the input B-ultrasound frame into a high-dimensional 

feature representation. To avoid the loss of detailed information in the feature space, the network uses 

skip connections to pass shallow local texture features directly to the decoder, allowing edge 

information to be reconstructed. During the decoding process, deconvolution and splicing operations 

restore spatial resolution, and features from different levels are integrated at each stage to achieve 

detailed restoration of tissue boundaries. During training, the model uses a mixed loss function of the 

Dice coefficient and cross entropy to balance the integrity of the lesion area contour and background 

suppression, ensuring the model's segmentation accuracy for irregular lesions. 

The automatic detection part generates a predicted bounding box of the target area based on the 

segmentation results, and quantitatively annotates the location and area of the lesion. The system 

combines the segmentation mask with the probability map distribution to automatically identify areas 

with drastic grayscale changes and abnormal textures, and uses a post-processing algorithm to delete 

false positive results [13]. The detection network adds a spatial pyramid pooling structure to the 

feature layer to adapt to the detection needs of lesions of different scales. This method can achieve 

target tracking in continuous frames in a video frame sequence and stably identify dynamically 

changing echo features. For multiple or fuzzy-bounded masses, stable temporal consistency is 

achieved by fusing the segmentation results of the previous and next frames. 

4. Results and Discussion 

4.1 Experimental Setup 

The experimental part uses 500 real clinical B-ultrasound video samples from a tertiary hospital, 

covering typical cases of different parts such as the liver, thyroid and breast. After manual screening, 

each video extracts key frames and removes invalid segments to form a standardized data set. The 

system uses the original frame before enhancement as the benchmark input and compares the 

traditional median filter enhancement algorithm, the CLAHE method and the AI enhancement 

detection system proposed in this paper. The experimental hardware configuration consisted of an 

NVIDIA RTX 4090 GPU and an Intel Xeon processor, and the software environment was 

implemented using Python and the PyTorch framework. Evaluation metrics included SNR, SSIM, 

and mAP. SNR measures the denoising effect and signal fidelity of the image, SSIM reflects the 

consistency of image structure and brightness contrast, and mAP verifies the accuracy of detection 

and segmentation. Each set of experiments was repeated five times and the results were averaged to 

reduce sampling error. Statistical analysis was used to assess the significance of differences between 

different algorithms. 

4.2 Experimental Results 

The experiment was carried out in a standardized ultrasound imaging experimental environment, 

and the acquisition scenes covered multiple types of examinations such as the abdomen, breast, 

thyroid and superficial tissue. A total of 500 key frame samples of B-ultrasound videos were used. 

All videos were grayscale standardized and resized, and the frame rate was maintained at 25fps to 

ensure timing consistency. During the testing phase, three algorithms were run under the same 

hardware environment: the adaptive median filtering enhancement algorithm, the CLAHE 

enhancement method and the AI enhanced detection system proposed in this article. The experiment 

was independently completed on 100 randomly selected groups of test samples, and each group of 
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images was ensured to contain background textures, vascular branches and potential lesion areas. In 

order to eliminate operational differences, image evaluation and detection results were batch 

generated by a unified script, and their validity was manually verified. The system recorded multiple 

sets of signal-to-noise ratio, structural similarity and detection accuracy data for performance 

comparison and comprehensive analysis. Figures 1, 2 and 3 are the SNR/SSIM/mAP test results 

respectively: 

 

Figure 1: SNR 

 

Figure 2: SSIM 

 

Figure 3: mAP 

The proposed method achieved an SNR range of 25.9–31.3 dB, significantly outperforming 

median filtering and CLAHE, demonstrating that the deep learning-enhanced model achieves a 

balance between noise reduction and smoothness preservation. The SSIM remained stable between 
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0.918–0.941 across a diverse sample, with an average of 0.932, demonstrating that the CNN feature 

map and attention fusion mechanism effectively restored tissue contrast and detail levels. The mAP 

data reflects the robustness of the detection module, with the proposed system maintaining a mAP of 

91.6%–93.5%, demonstrating that the combined U-Net segmentation and automatic detection 

strategy significantly enhances lesion localization capabilities. Overall, while traditional algorithms 

can improve image brightness to a certain extent, they are unstable when processing speckle noise 

and weakly echogenic lesions. However, the proposed method maintains high resolution and 

structural integrity across multiple cases, is particularly effective for low-SNR videos, and possesses 

greater clinical practical value. 

4.3 Results Analysis 

The contribution of the model structure to performance improvement was verified through a 

stepwise ablation experiment. First, using the complete model as a baseline, each structural module 

was removed or replaced, then retrained. Performance metrics such as SNR, SSIM, and mAP were 

tested under the same dataset and parameter conditions. The testing steps included: ① Fixing the 

training and validation sets; ② Removing modules one by one, such as the feature enhancement unit, 

attention mechanism, and fusion layer; ③ Recording the changes in each metric; ④ Calculating the 

percentage of performance degradation as a reference for contribution; ⑤ Comparing and analyzing 

the importance of each module and the overall synergistic effect. The contribution analysis results are 

shown in Table 1: 

Table 1: Contribution Analysis Results 

Model 

Configuration 

Feature 

Enhancement 

Module 

Attention 

Mechanism 

Multi-Scale 

Fusion 

Residual 

Connection 

Performance 

Contribution 

(%) 

Full Model √ √ √ √ 100 

Without Feature 

Enhancement 
× √ √ √ 91.3 

Without Attention 

Mechanism 
√ × √ √ 93.5 

Without Multi-
Scale Fusion 

√ √ × √ 88.7 

Without Residual 

Connection 
√ √ √ × 95.4 

Backbone Only × × × × 82.6 

As shown in the table, the complete model performs best, with each individual module 

significantly contributing to overall performance. The multi-scale fusion module contributes the most, 

followed by feature enhancement and the attention mechanism. Removing multi-scale fusion reduces 

performance by over 11%, demonstrating its crucial role in effectively integrating information from 

different levels for feature representation. The feature enhancement module significantly improves 

detail recovery and noise suppression, while the attention mechanism enhances recognition by 

focusing on salient feature regions. While the residual connection contributes relatively little, it plays 

an important supporting role in stabilizing training and preventing vanishing gradients. Together, 

these four components form an overall performance optimization system. 

5. Conclusion 

The proposed B-ultrasound video image enhancement and automatic detection system fully 

integrates the synergistic advantages of image preprocessing, deep feature extraction, and semantic 
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segmentation detection in its structural design. Through adaptive filtering and contrast enhancement, 

the readability of B-ultrasound images is significantly improved, providing better input conditions 

for subsequent feature extraction in deep networks. The CNN-based feature extraction module and 

multi-scale attention mechanism achieve accurate modeling of local texture and global structure, and 

possess strong robustness and stability in complex tissue structures. The U-Net-style detection 

structure effectively integrates shallow edge and deep semantic information, improving the boundary 

recognition and morphological consistency of lesion areas. The overall framework embodies the 

targeted and generalizable nature of artificial intelligence methods in medical image understanding. 

However, the system still has limitations in real-time processing performance and cross-device 

generalization. The efficiency and adaptability of clinical applications can be further improved 

through lightweight network design and transfer learning strategies. 
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