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Abstract: The monitoring cloud platform of the ship power system can provide an 

important guarantee for the autonomous navigation of intelligent ships, and it can process, 

store and analyze the data generated in the navigation process. The change of its running 

state will affect the effective evaluation of intelligent equipment, navigation environment 

and driving behavior of ships by technicians. This paper mainly studies the design of 

engineering ship power machinery serialized monitoring system integrated with deep 

learning. This paper mainly uses NI data acquisition equipment to collect 

multi-dimensional vibration signals of shafting, gear box and bearing, and uses vibration 

method to monitor and diagnose the running state of shafting, and develops a ship shafting 

condition monitoring and fault diagnosis system based on LabVIEW. In order to improve 

the efficiency and accuracy of ship shafting fault identification and diagnosis, a ship 

shafting fault diagnosis method based on deep learning was proposed. The deep belief 

network (DBN) method is applied to shafting fault diagnosis. 

1. Introduction 

Along with the continuous development of science and technology, the diesel engine has become 

more sophisticated, automation degree is also rising, this kind of development trend, make the 

system structure and increasing the complexity of diesel engine, such as diesel engine air intake 

system, fuel supply system, cooling system, etc., and each system has many small systems and 

components, The four working processes of intake, compression, work and exhaust of diesel engine 

involve the knowledge of dynamics, thermodynamics and chemistry, and most Marine diesel 

engines operate in a poor environment, so the probability of failure in the operation process is high 

[1-2]. When the ship is in operation, it is necessary to collect and analyze relevant parameters for 
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monitoring and fault diagnosis of diesel engine physical parameters. But, due to the complex 

structure of diesel engine, and there are many different kinds of fault, even if the observed 

parameters or the abnormal data changes, in the absence of a large number of fault cases, on the 

basis can only rely on the personnel working on the ship, with limited experience, for diesel engine 

state judgment, and fault diagnosis. In this case, misjudgment or missed judgment will often occur, 

so relying on manual experience for fault diagnosis will not only lack sufficient reliability, but also 

have great labor intensity for the staff [3-4]. Fault diagnosis of artificial experience cycle is long, 

often requires repeated downtime, and to tear open outfit of diesel engine, then to determine the 

cause of the problem, and this method is to the fault of diesel engine have been developed to the 

human eye can see, or diesel engine problems arise to judge function, greatly increases the 

maintenance costs of the diesel engine and its personnel's workload, It reduces the safety and 

reliability of the ship system [5-6]. 

The international research on ship monitoring cloud platform starts from ship-to-shore 

communication. The European Union has completed the deployment of "RIS system", which can 

effectively integrate ship information in the basin and effectively coordinate the compatibility of 

different ship information systems [7]. The International Maritime Organization (IMO) has 

launched the Remote Identification and Tracking System (LRIT), which can effectively identify and 

transmit the location, transportation and navigation information of ships in real time, enabling the 

remote and safe management of ships. On the basis of the Internet of things, Hyundai Heavy 

Industries and Electronics and Communication Research Institute of Korea has developed the ship 

network to increase the information communication ability between people and ships, between 

ships and ships, and between ships and banks, and incorporated enterprises, shipyards and goods 

into the management system, forming the prototype of the monitoring cloud platform [8]. Japanese 

shipping companies and shipbuilding enterprises jointly established IOS-OP (Internet of Ships 

Open Platform), a ship information sharing Platform, which was used to collect and share various 

data in the sailing process of Ships, and relevant staff could evaluate the sailing status of Ships 

based on the data [9]. Although the research on ship monitoring cloud platform started late in China, 

thanks to the efforts of domestic ship industry and scientific research personnel, breakthroughs have 

been made in many key fields, and a good ship industry system has been formed. The development 

level of ship monitoring cloud platform in China has been among the top international ranks [10]. 

Improving the reliability evaluation system of the monitoring platform and establishing the 

reliability evaluation model can effectively reduce the impact caused by faults, ensure the healthy 

operation of the system and reduce the difficulty of technical personnel, which is of great 

significance to the safe navigation, control decision-making and efficient management of intelligent 

ships. 

2. Ship Dynamic Monitoring and Fault Detection System Based on Deep Learning 

2.1. The System Design 

The system design is roughly divided into several parts: complete multi-channel signal 

synchronous acquisition, and support the display of test signal time domain waveform, spectrum, 

axis trajectory and a number of related characteristic parameters; Real-time data processing, various 

forms of display processing results, for the ship shafting operation state and fault diagnosis to 

provide a basis; Waveform data is stored and played back to realize offline data analysis; Real-time 

monitoring of shafting state, over-limit alarm can be timely, to avoid the occurrence of "false 

alarm" or "false alarm"; According to the analysis results, the fault alarm, specific to the 
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measurement points and characteristic parameters, and appropriate maintenance suggestions; The 

database matching with this monitoring system is established to facilitate the query, display, 

statistics, storage and export of data, achieve good management of data, and realize trend analysis 

and display [11-12]. Therefore, the system should contain five modules: vibration analysis and 

processing, vibration signal display, diagnosis and alarm, trend analysis, storage and playback [13]. 

The vibration analysis and processing module is a module for analyzing and processing the 

signals collected by the sensor. The vibration signals are transmitted to the host computer through 

the acquisition card and the chassis. The sensitivity conversion, filtering and time-frequency 

analysis of the signals are carried out in the monitoring program to obtain the waveforms in the time 

domain and frequency domain, and each characteristic parameter of each signal is extracted [14]. 

Display module display system processing vibration signal after figure and characteristic 

parameters of the figure includes all monitoring channel signal time domain, frequency spectrum 

diagram and axis path diagram, characteristic parameters in two forms, according to one is a form 

of form, the other is on the shafting structure, according to the corresponding points of the two 

forms are to be carried out in real time display [15]. 

The diagnosis and alarm module is divided into two sub-modules: fault alarm and fault diagnosis. 

The analysis and judgment results of collected signals are displayed in a table. The fault alarm and 

fault diagnosis tables are divided into three parts: serial number, time and details. The fault alarm 

details show the situation that the feature parameter exceeds the threshold, and the fault diagnosis 

details show the possible fault status and cause of the current shafting. The update time of the 

information in the two tables can be set, and the default value is 1min. At the same time, in order to 

prevent "false alarm" and "false alarm", when the system detects abnormal shafting state, a delay 

time is set, and the alarm will start when the state is abnormal within this period [16]. 

The trend analysis module displays the running trend of characteristic parameters, which is 

divided into historical trend and future trend. In the process of system operation, the feature 

parameters of all measuring points are stored in the database at a certain time interval. During trend 

analysis, the feature parameters stored in the database are extracted into LabVIEW, and the channel 

selection button, feature parameter selection button, time axis, average mode selection, etc., are set. 

The trend of different characteristic parameters of different channels is displayed based on the user's 

selection. 

Storage playback module into the storage and playback, storage including the waveform data 

storage and database storage, data playback module for playback waveform before storage, system 

operation process, the storage characteristic parameters to the database on a regular basis, not only 

can be manually and automatically store all channels of the original waveform, the waveform file 

named after the time, when the offline analysis, The playback file name and channel can be selected 

through the data playback module to process the waveform. 

The monitoring system program structure is designed well, so that the system can complete the 

required functions, and then the front panel of the system should be designed and optimized. The 

design of the program is related to function, and the design of the front panel is related to 

operability, which makes the whole front panel easy to understand, cover rich content and easy to 

operate. Therefore, the front panel of the ship shafting condition monitoring system is divided into 

five parts: overall monitoring, signal characteristic analysis, fault alarm and diagnosis, trend 

analysis and data playback [17-18]. 
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2.2. DBN Fault Diagnosis 

Deep confidence networks (DBNS) are stacked with multiple layers of restricted Boltzmann 

machines, each of which can simply be viewed as independent 

In the classification of one-dimensional vibration signals, when the dimension of input data is 

less than or equal to 1000 and there are few categories (2-4 categories), the three-layer or four-layer 

network structure can be adopted. When the dimension of the input data is greater than 1 000 but 

less than 5 000 and there are many categories (4-6 categories), a four-layer or five-layer network 

structure can be adopted. 

The number of nodes in the input layer is selected according to the length of the input signal. For 

example, when the input signal is an N-dimensional vector, the number of nodes in the input layer 

should be N. 

After all RBM training, a classifier model will be set at the end for fitting or classification. The 

classifier model generally chooses the logistic function or softmax function. 

logistic function is also known as sigmoid function, and its function formula is: 
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Where: x0 is the center of the function curve; k is the slope of the curve. 

The essence of the softmax function is data mapping: mapping one k-dimensional data into 

another k-dimensional data with elements in the data ranging from (0,1). The formula of softmax 

function is: 
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Type: j = 1, 2,... , K. 

DBN classification of ship axis coefficient data is a multi-class problem, so softmax function is 

selected as the final classifier model. 

Deep learning is a process of abstracting and extracting low-level features to form high-level 

features. It is a learning network based on data features. When the original signal directly as a 

low-level input, deep learning can through the network learning to the characteristics of the original 

signal itself, do not need artificial feature extraction and selection process, avoiding the traditional 

feature extraction method of complexity and uncertainty, makes could improve the maneuverability 

of machine learning, machine learning intelligent got enhanced. 

The shafting fault diagnosis method based on DBN is shown in Figure 1. 
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Figure 1. Fault diagnosis method of shafting based on DBN 

3. Fault Diagnosis Test Experiments 

This section will be carried out comparative experiments of different diagnosis network, the first 

in a simulated data sets will be traditional DBN diagnosis and comparison between the network and 

improve the DBN diagnosis analysis of the performance before and after improvement, followed by 

a further sign of effectiveness, case western reserve university in the United States public data sets 

will be improved DBN diagnosis network compared with other diagnosis network, Analyze the 

performance differences among different diagnostic networks. 

The variable noise experiment needs to simulate the bearing vibration signal polluted by noise. 

To this end, the bearing vibration signal to be tested is first processed with noise in the time domain. 

The added noise is Gaussian white noise with different signal-to-noise ratio (SNR), and then the 

original vibration signal is taken as the input signal of the diagnosis network. The anti-noise ability 

of the network model is judged by the final recognition accuracy. In order to analyze the anti-noise 

capability of the improved DBN diagnostic network, the SNR range is set as -5dB to 5dB in this 

section, and then the diagnosis effect on the added noise test set is compared. Also to avoid 

randomness, the experiments were repeated 10 times for each model. 

The variable working condition experiment needs to simulate bearing vibration signals under 

different working conditions, so the bearing vibration signals under different load conditions are 

used for combination verification. Considering in a simulated data set contains three kinds of load 

conditions, so the cross validation, in which some load conditions of bearing vibration signals as the 

training set, the other two load conditions of bearing vibration signals as the test set, the recognition 

accuracy of judgment on the test set network operation mode adaptive ability of the model. 
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4. Experimental Results 

4.1. Comparison of Diagnosis Results 

Table 1. Diagnostic results before and after improvement 

Model Test set Average accuracy rate 
Average number of 

training rounds 

Traditional DBN 0% simulated data set 93.7% 20 

Improve DBN 0% simulated data set 95.2% 14 

 

As can be seen from the data in table 1, improve the effects of DBN diagnosis network model of 

the two is more outstanding, not only the training of the network on the training set speed 

significantly increased by 30%, but also improve the accuracy in test set was 1.5%, this indicates 

that the improved DBN diagnosis network can be trained more efficiently, more good recognition 

effect. 

4.2. Variable Noise Experiment 

Table 2. Experimental results of variable noise 

 -5 -3 -1 0 1 3 5 

Traditional 

DBN 
52% 67% 68% 79% 87% 91% 92% 

Improve 

DBN 
92% 93% 93% 93% 93% 94% 94% 

 

 

Figure 2. Statistical results of variable noise experiment 
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As shown in Table 2 and Figure 2, by observing the final experimental results, it can be found 

that when SNR exceeds 3dB, both diagnostic models can maintain an accuracy of more than 90%. 

However, when SNR is lower than 3dB, the performance of traditional DBN diagnostic network 

decreases rapidly, and when SNR=-5dB, the accuracy rate is only about 52%. This is because at this 

time, the test set signal has been seriously contaminated, so the diagnosis network may not learn the 

key features for fault diagnosis from the training set, and finally reduce the classification 

performance on the test set. 

4.3. Variable Condition Experiment 

 

Figure 3. Experimental results of variable working conditions 

As shown in Figure 3, the traditional DBN diagnostic network has poor domain adaptive ability, 

and the diagnosis rate in the cross-validation experiment is as low as 81%, while the improved DBN 

diagnostic network can achieve more than 90% recognition accuracy in any condition. 

5. Conclusion 

In today's increasing technology reform, our country for the ocean is also continuously exploring 

in depth, ships as the most important means of transportation, how to ensure the safe navigation of 

ships in today's big data-driven becomes a key research question. As an important branch of 

machine learning, deep learning can effectively use huge data sets to mine the deep internal 

characteristics of data, which can surely serve as a solid bridge in the connection between big data 

and health status monitoring. In order to improve the efficiency and accuracy of ship shafting fault 

identification and diagnosis, a ship shafting fault diagnosis method based on deep learning is 
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proposed. 
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