
Scholar Publishing Group

Distributed Processing System

https://doi.org/10.38007/DPS.2020.010202

ISSN 2790-0916 Vol. 1, Issue 2: 10-17

Copyright: © 2020 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

10

High Performance Computing for Big Data in Distributed

Systems

Antonio Cruz Chavez
*

Univ Quebec, Ecole Technol Super, Montreal, PQ, Canada

*
corresponding author

Keywords: Big Data, High Performance Computing, Distributed Systems, Meta Data

Abstract: With the continuous progress of high performance computing technology and

application technology, high performance computer has been applied more and more

widely. This paper focuses on the research and application of high performance computing

for big data in distributed systems. This paper first designs a distributed hybrid storage

system based on DRAM and SSD, and then implements a phase-consistent strategy to

optimize the performance of client-side cache and optimize the read performance through

client-side metadata cache. The simulation results show that the system designed in this

paper can be applied to the actual production environment.

1. Introduction

With the continuous development of computer architecture and hardware manufacturing

technology, CPU operation speed, random access memory and disk capacity, access speed have

made great progress. The number of transistors in DRAM and CPU doubles every 18 months

according to Moore's law, while disk and other I/O devices develop at a much slower rate due to the

characteristics of their mechanical components. In the past decades, the annual growth rate of CPU

performance exceeds 60%, while the performance of disk only grows at a rate of 4% to 7%. The

increasing gap between the CPU computing speed and the access speed of the I/O system forms the

"I/O wall". The barrel effect in the whole system leads to the I/O system becoming the main

bottleneck of the overall system energy, especially in the case of the parallel distributed computing

cluster sharing the storage system, the I/O system seriously restricts the overall system performance

[1-2]. In order to alleviate the bottleneck of I/O system, many new technologies or researches have

been developed to improve the access performance of I/O system. New storage media are used to

overcome the performance bottleneck of traditional disk media, such as SSD and other

non-mechanical storage media. Improve the network throughput performance of the storage system

using high-performance storage networks, such as Infiniband. Research on new storage architecture,

Distributed Processing System

11

using multi-level storage system to improve the efficiency of data access; The parallel processing

technology was introduced into the external storage system, and RAID and other technologies

emerged to improve the throughput of disk data access through I/O parallel. In addition, a large

number of network storage technologies, such as NAS and SAN, have emerged to provide efficient

data storage services through dedicated network storage devices or dedicated storage networks [3-4].

Note that in the high performance computing environment, compute nodes are often configured

with large physical memory, and there is often free memory on each compute node in the process of

computing. If these idle memory can be aggregated, it can provide a considerable amount of

high-speed storage space. At the same time, in high performance computing, it is often the case that

all computing nodes frequently share and access some file data. In large-scale distributed rendering

applications, a large number of texture materials and object model files are frequently shared and

accessed by all computing nodes [5-6]. If the idle memory of the above computing nodes is

aggregated, the shared file data frequently accessed by each node is cached in the memory, and the

network and disk I/O overhead for accessing this data is shielded. This greatly improves the overall

system performance and reduces the access load of the shared file storage system.

With big data era coming, the high performance computing become indispensable tool for

scientific research, multiple disciplines in the field of production development needs on high

performance computing, these tend to data-intensive application, such as gene sequencing, oil

seismic exploration, satellite remote sensing data processing, climate research and air dynamics

simulation, etc. [6]. Lustre is a distributed parallel File System developed by Cluster File System

formula. It is mature and has excellent performance. Its open source feature makes Lustre widely

used in the field of high performance computing. About 60% of supercomputers in the Top500 list

use Lustre system, and 6 of the top 10 supercomputers directly use Lustre system [8]. Google File

System (GFS) is a distributed parallel File System developed by Google. GFS is designed for a

large number of cheap ordinary computers, takes component failure as normal, and provides users

with massive storage capacity and high performance services through reliability mechanism [9].

This paper designs and implements a distributed hybrid storage system based on DRAM and

SSD for high performance computer, and optimizes the system.

2. Overall Design and Optimization of Distributed Systems for High Performance Computing

2.1. Overall System Design

DMFS is a user-mode distributed memory file system, which is mounted through the user-space

file system FUSE, and can be deployed in any operating system that supports FUSE. Centralized

metadata management is adopted, and the metadata management process is easy to analyze and

optimize. Supports POSIX protocol. Applications can access the file system without modification.

Open source system, easy to develop and debug, has the advantages of high performance, high

availability, easy deployment and maintenance [10-11].

In order to achieve the design goal of high system reliability, this paper uses SSD to persist data

blocks in DRAM space, eliminating the multi-copy mechanism and avoiding the use of valuable

DRAM storage space by duplicates.

In order to achieve the high performance of the hybrid storage system, we design a data layout

strategy that combines the characteristics of the two storage media, and migrates the data of the two

storage Spaces reasonably.

The SSD storage capacity constitutes most of the storage space of the hybrid storage system, and

the change of node memory capacity has a small impact on the data service of the system. Therefore,

Distributed Processing System

12

we no longer use CG mode, and the data server is a separate Chunkserver, which simplifies the

management in the Chunkserver. The communication and data overhead between Chunkservers are

reduced, and the load of Chunkserver is reduced [12].

(1) Metadata management service module Master

The metadata management service module still uses the active/standby mode to improve the

availability of the metadata service, detects anomalies through Keepalived and performs

active/standby switchover. The metadata management module no longer maintains the block

replicas and does not need to manage the migration of replicas between Chunkservers.

(2) Data server Chunkserver

The function of data server is to provide data storage and data access services. The data server

manages the hybrid storage space internally and provides a unified storage view externally. The

hybrid storage space is transparent to applications. The data server is also responsible for marking

the data block value and migrating the data block based on the data block value and storage space

usage.

(3) Client Client

The client retains POSIX protocol support and is mounted through FUSE.

The system implements a distributed hybrid storage system in user mode. The storage media are

free memory resources in compute nodes and mounted SSDS. The system mainly provides

large-capacity storage services with high bandwidth and low latency for data-intensive applications.

To improve metadata access performance, the Master loads metadata to the memory of a node.

Therefore, the Master must be deployed on a node with low CPU usage and sufficient memory

resources. Currently, the compute nodes are not equipped with SSDS. Therefore, the Chunkserver is

deployed on the compute nodes mounted with SSDS. The Client runs on any compute node that

supports FUSE [13].

(4) Functional modules

The data store location module of the Client locates the data server where the access block

resides based on the full path name and access offset of the accessed file. If it is the first time, you

need to communicate with the Master to obtain metadata information and file layout information. If

the file layout information is available, the system calculates the data server where the data block

resides and establishes a connection for data transmission.

Space management module of the Chunkserver: The space management module is responsible

for allocating and reclaiming DRAM and SSD storage space. The space management module feeds

spatial information to the data migration module, and triggers data migration when DRAM space is

insufficient [14]. The implementation of data migration needs the support of space management

module. Storage space management determines whether the performance of the two storage media

can be fully utilized, and directly affects the read and write process of hybrid storage.

Data migration module: Migration is based on data blocks. The data migration module migrates

data blocks based on their value.

2.2. Cache Optimization Strategy

In the distributed file system used in this paper, metadata of all files is centrally managed by the

metadata server, and each data block of a file has corresponding metadata information in the master.

When an application's I/O request arrives at the client of the file system, it will first be added to the

corresponding request queue. After accessing a file data block object, it will go to the metadata

server master to obtain the metadata information corresponding to the data block. After the client

Distributed Processing System

13

obtains the metadata information corresponding to the data block, Directly communicate with the

corresponding DS to obtain the corresponding data. Every time the client requests for data block

access, it needs to access the metadata server. When the client is in high concurrency I/O access

mode, it will exert great access pressure to the metadata server [15-16].

The process analysis of the metadata service shows that every data read operation of the client

communicates with the master. When multiple clients request metadata at the same time, it will

cause great pressure on the master, which will affect the client I/O performance of the application.

In high performance applications, the high performance of applications is usually the first priority.

In typical high performance applications, the client access mode to files is 1:1, that is, a file is read

and written by only one process, and most files are read and written consecutively at one time.

Therefore, in order to relieve the pressure of the metadata server in the file system, prevent the

client from requesting frequent access to the metadata server, and consider the series of I/O

characteristics of high-performance applications, the metadata access management of the file

system client can be optimized [17-18].

In order to alleviate the metadata service bottleneck when the client reads and writes data, this

paper proposes to set up file metadata cache on the client of the file system. Optimizing metadata

management mainly includes the following two aspects:

(1) Metadata cache on the client (inode corresponds to metadata information of all data blocks)

Figure 1 shows the processing flow of metadata read request after metadata optimization. Whenever

the chunk of a file is read for the first time, metadata information of all data blocks of the file

corresponding to this chunk is cached on the client. Subsequently, the chunk metadata information

does not need to access the master, thereby reducing the access load of the master.

Figure 1. Read request process after metadata optimization

(2) Metadata cache is weakly consistent

The I/O process of a typical high-performance application is usually staged. To maintain the

consistency of the metadata cache, the metadata cache is periodically released according to the

phase duration of the high-performance application, so that the metadata cache is consistent with

the master in the current file operation phase.

3. Simulation Experiment

In the design of the system, the block used to represent the data region is the basic unit of DMFS

Read chunk data

Chunk data

First chunk in file

All chunks in the file

Distributed Processing System

14

file segmentation. If the block size is too large, the limited memory space will be wasted due to the

large segmentation granularity. If the block size is too small, the amount of metadata will be large

and the management efficiency will be reduced. As the basic unit of MC data area check and

operation, sub-block is directly related to the speed of data check and operation. The selection of

block and sub-block sizes has an important impact on system read/write performance, metadata

scale, and management efficiency. Traditional distributed file systems such as GFS, HDFS, and

MooseFS all use 64MB block size to meet the application scenarios of cloud computing and big

data, while MooseFS supports 4MB block size and 4KB subblock size to meet the processing

requirements of small files. Since the storage capacity of DMFS is in the tens of terabytes, the

metadata size is not a primary concern, so the blocks can be relatively small, between 2MB and

8MB by test selection.

4. Analysis of Simulation Experiment Results

4.1. Sequential Read and Write Performance

Table 1. Sequential read performance comparison of different block sizes

 16 32 64 128

2MB 587 854 832 825

4MB 632 960 992 1041

8MB 596 971 1014 1176

Figure 2. Sequential write performance comparison of different block sizes

As shown in Table 1 and Figure 2, the sequential read/write performance is compared. For

sequential read, the performance of 2MB, 4MB and 8MB is close when the file block size is small,

but when the file block size is large, 4MB and 8MB are better than 2MB. For sequential writes,

0

200

400

600

800

1000

1200

1400

1600

1800

16 32 64 128

B
an

d
w

id
th

(m
b

)

File Block Size(kb)

2MB 4MB 8MB

Distributed Processing System

15

2MB and 4MB perform close to each other and are balanced across various block sizes, while 8MB

performs better when the file block is large.

4.2. Random Read/Write Performance

Table 2. Random read performance comparison of different block sizes

 16 32 64 128

2MB 71 186 435 495

4MB 73 203 468 574

8MB 72 205 471 596

Figure 3. Random write performance comparison of different block sizes

As shown in Table 2 and Figure 3, the performance of random read/write is compared. For

random read, the performance of 2MB, 4MB, and 8MB are close to each other. For random write,

8MB is more advantageous when the file block is small. Based on the above analysis, 8MB

provides the most comprehensive performance, so the block size of the system is determined to be

8MB.

5. Conclusion

Aiming at the I/O bottleneck problem of high performance computer storage system, this paper

presents the structure characteristics and idle resources oriented to high performance computer, and

designs and implements a distributed memory file system. A distributed memory file system

(DMFS) for high performance computer is designed and implemented. It implements metadata

service with high availability, data grouping for dynamic expansion, object storage based on

memory block and data transfer mechanism RBB based on RDMA. In this paper, the key

technologies of distributed memory file system for high performance computer have been studied

and some achievements have been made. It can make use of free memory and bandwidth resources,

0 200 400 600 800 1000 1200 1400 1600

16

32

64

128

Bandwidth(mb)

F
il

e
B

lo
ck

 S
iz

e(
k
b

)

8MB 4MB 2MB

Distributed Processing System

16

relieve the pressure of existing storage systems to a certain extent, and improve the execution

efficiency of I/ O-intensive applications. However, since distributed file system has always been a

complex system engineering, in view of the time factor, some of the design or implementation of

DMFS has been simplified, there are still a lot of valuable problems need to be further studied.

Funding

This article is not supported by any foundation.

Data Availability

Data sharing is not applicable to this article as no new data were created or analysed in this

study.

Conflict of Interest

The author states that this article has no conflict of interest.

References

[1] Kumar H, Chauhan N K, Yadav P K. A High Performance Model for Task Allocation in

Distributed Computing System Using K-Means Clustering Technique. International Journal of

Distributed Systems and Technologies, 2018, 9(3):1-23.

https://doi.org/10.4018/IJDST.2018070101

[2] Sierra R, Carreras C, Caffarena G. Witelo: Automated generation and timing characterization

of distributed-control macroblocks for high-performance FPGA designs. Integration, 2019,

68(SEP.):1-11. https://doi.org/10.1016/j.vlsi.2019.05.001

[3] CJ Barrios Hernández, Gitler I, Klapp J. [Communications in Computer and Information

Science] High Performance Computing Volume 697 || Distributed Big Data Analysis for

Mobility Estimation in Intelligent Transportation Systems. 2017,

10.1007/978-3-319-57972-6(Chapter 11):146-160.

[4] Brinkmann A, Mohror K, Yu W, et al. Ad Hoc File Systems for High-Performance Computing.

Journal of Computer Science and Technology, 2020, 35(1):4-26.

[5] Czarnul P, Proficz J, Drypczewski K. Survey of Methodologies, Approaches, and Challenges in

Parallel Programming Using High-Performance Computing Systems. Scientific Programming,

2020, 2020(5):1-19. https://doi.org/10.1155/2020/4176794

[6] Mathe Z, Haen C, Stagni F. Monitoring performance of a highly distributed and complex

computing infrastructure in LHCb. Journal of Physics Conference, 2017, 898(9):092028.

[7] Titov M, G Záruba, De K, et al. A study of the applicability of recommender systems for the

Production and Distributed Analysis system PanDA of the ATLAS Experiment. Journal of

Physics Conference Series, 2018, 1085(4):042028.

[8] Roberto, Diversi, Andrea, et al. Thermal Model Identification of Computing Nodes in

High-Performance Computing Systems. IEEE Transactions on Industrial Electronics, 2019,

67(9):7778-7788.

[9] Cuomo S, Galletti A, Marcellino L. A GPU parallel optimised blockwise NLM algorithm in a

distributed computing system. International Journal of High Performance Computing and

Networking, 2018, 11(4):304.

Distributed Processing System

17

[10] Michal, Janczykowski, Wojciech, et al. Large-scale urban traffic simulation with Scala and

high-performance computing system - ScienceDirect. Journal of computational science, 2019,

35(C):91-101. https://doi.org/10.1016/j.jocs.2019.06.002

[11] Nathan H, Vishal A, Farrens M K, et al. A Survey of End-System Optimizations for

High-Speed Networks. ACM Computing Surveys, 2018, 51(3):1-36.

https://doi.org/10.1145/3184899

[12] CaoNgocNguyen, SoonwookHwang, Jik-SooKim. Making a case for the on-demand multiple

distributed message queue system in a Hadoop cluster. Cluster Computing, 2017, 20(3):2095–

2106.

[13] Borghesi A, Molan M, Milano M, et al. Anomaly Detection and Anticipation in High

Performance Computing Systems. IEEE Transactions on Parallel and Distributed Systems, 2020,

PP(99):1-1.

[14] P López, Baydal E. Teaching high-performance service in a cluster computing course. Journal

of Parallel and Distributed Computing, 2018, 117(jul.):138-147.

https://doi.org/10.1016/j.jpdc.2018.02.027

[15] Ko H, Pack S. Distributed Device-to-Device Offloading System: Design and Performance

Optimization. IEEE Transactions on Mobile Computing, 2020, PP(99):1-1.

[16] Yokota R, Weiland M, Keyes D, et al. [Lecture Notes in Computer Science] High Performance

Computing Volume 10876 || Zeno: A Straggler Diagnosis System for Distributed Computing

Using Machine Learning. 2018, 10.1007/978-3-319-92040-5(Chapter 8):144-162.

https://doi.org/10.1007/978-3-319-92040-5_8

[17] Reuther A, Byun C, Arcand W, et al. Scalable system scheduling for HPC and big data.

Journal of Parallel and Distributed Computing, 2018, 111(jan.):76-92.

https://doi.org/10.1016/j.jpdc.2017.06.009

[18] Han M, Park J, Baek W. Design and Implementation of a Criticality- and

Heterogeneity-Aware Runtime System for Task-Parallel Applications. IEEE Transactions on

Parallel and Distributed Systems, 2020, PP(99):1-1

