
Scholar Publishing Group

Distributed Processing System

https://doi.org/10.38007/DPS.2021.020406

ISSN 2790-0916 Vol. 2, Issue 4: 44-51

Copyright: © 2021 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

44

Distributed System Application Strategy based on

Dynamic Load Balancing Model of Cloud Computing

Mazinin Anuen
*

Griffith University, Australia

*
corresponding author

Keywords: Cloud Computing Technology, Dynamic Load Balancing Model, Distributed

System, Application Strategy Research

Abstract: As a new distributed computing technology, more and more applications are

deployed and developed in the cloud system. At the same time, load balancing(LB) is the

key technology to solve the high-performance computing in the distributed system(DS).

Therefore, this paper studies the application strategy of dynamic LB model based on cloud

computing(CC) in DS. CC technology and LB algorithm are briefly analyzed; The

dynamic LB model based on CC is discussed, and the dynamic LB strategy is designed;

Finally, the effectiveness of the application strategy of the dynamic LB model based on CC

in the DS is analyzed through simulation experiments. The experimental results show that

the dynamic LB algorithm designed in this paper has a good effect on the LB of each node

in the DS.

1. Introduction

CC represents the development direction of computer and communication technology in the

future. Cloud storage represented by DS is an important part of CC, and LB technology is one of the

core technologies of cloud storage. In recent years, distributed file system has become a promising

application architecture of distributed file system with its own advantages, and it is the research

hotspot of commercial cluster system. So it is very important to study the practical application of

cluster. Therefore, the research on how to design a LB strategy suitable for this specific application

scenario has become the focus. In this paper, the application strategy of dynamic LB model based

on CC in DSs is studied and analyzed.

As the LB technology is very important to the overall performance of the distributed cluster

system, and is the core technology to meet the high availability needs of users for the distributed

cluster system, many colleges, research institutions and enterprises at home and abroad have

conducted long-term research and development in this field. Wallden m et al analyzed and

Distributed Processing System

45

compared several dynamic LB algorithms, such as bee foraging, preference based random sampling

and active clustering algorithm. Their analysis shows that with the increase of system diversity, the

bee foraging algorithm can give full play to the throughput compared with the other two algorithms

[1]. Alam m proposed two static algorithms in cloud environment. One of them is the opportunistic

LB algorithm. In this algorithm, the service manager calculates the nodes with the smallest task

execution time, and these nodes accept and process the upcoming tasks. The second strategy is the

minimum LB strategy, which improves the resource utilization of the cloud data center by

maintaining load balance [2].

For the cloud system, how to reasonably schedule tasks and allocate resources to ensure the load

balance of the DS is very important. Firstly, this paper expounds the development status of CC at

home and abroad. According to the analysis of CC technology, the LB problem of cloud system is

pointed out; Secondly, the characteristics and classification of LB technology are analyzed; The

application strategy of dynamic LB model based on CC in DS is studied and analyzed, and the

dynamic LB algorithm based on CC is proposed. In this algorithm, the task master agent and task

slave agent with master-slave structure are designed in the DS, and efficient task scheduling and

resource allocation are realized. Through evaluation and comparative simulation experiments, the

results show that the strategy is excellent in task completion time, average response time and load

balance [3-4].

2. Dynamic LB Model based on CC

2.1. CC

As a new distributed computing technology, more and more applications are deployed and

developed in the cloud system. Through cloud service providers such as Amazon, Google,

Microsoft and Alibaba, we can quickly configure and publish applications with minimal

management. CC provides a service-oriented architecture and network service application,

including fault tolerance, feasibility, flexibility and scalability, and reduces the cost of information

technology [5].

CC technology architecture: from the technical level, CC can be roughly divided into four parts.

The main function of the physical resource layer is the integration of physical hardware resources

and related network equipment. The resource pool layer is mainly used to virtualize physical

resources to form a virtual resource pool for the upper layer to call. The main function of the

resource middleware layer is to manage the resources, security, users and tasks of the system,

monitor the system, detect and adjust the resource load. The SOA layer provides users with

encapsulated CC web applications, and users can obtain corresponding services and resources

according to their own needs [6-7].

2.2. Introduction to LB Algorithm

LB means to increase the computing capacity, reduce the computing time and improve the

comprehensive performance of the DS through the allocation and scheduling of load tasks.

Therefore, LB is the key technology to solve high-performance computing in DSs. Generally

speaking, the LB algorithm will complete the task allocation and scheduling according to the state

information of the terminals in the DS. The specific state information includes the CPU utilization

rate, memory utilization rate, communication capacity and other performance parameters of each

terminal. Therefore, LB problem can also be called task scheduling problem [8-9].

Distributed Processing System

46

LB algorithm plays an important role in DS. This kind of algorithm can not only solve the

problem of balanced allocation of terminal simulation tasks in DS, but also reduce the

communication overhead between terminals. It is a key technology to improve the running speed of

DS [10].

Generally, LB algorithms are divided into static LB algorithms and dynamic LB algorithms.

Static LB algorithm refers to the situation that the task allocation has been completed before the

system runs, and the task will not migrate during the system operation.

Dynamic LB refers to the imbalance between the terminals caused by the configuration of the

running terminals and the size of the overhead of the tasks during the system operation. At this time,

the tasks between the terminals need to be migrated to achieve dynamic balancing.

Static LB algorithm is generally applicable to DSs with small fluctuation of load tasks. However,

due to the particularity of distributed traffic network simulation system, the fluctuation of terminal

load in the system is determined. Therefore, dynamic LB is more commonly used to solve the load

distribution problem of distributed traffic network simulation system [11-12].

2.3. Dynamic LB Model based on CC

At the beginning, the LB technology only distributes user requests and task requests to the server

in the form of static algorithms, Improve its resource utilization rate [13-14]. However, with the

increase of requests, the tasks assigned to nodes with weak computing capacity will take a long time

to be processed, with long waiting time, increased processing delay, and reduced overall system

efficiency. It greatly improves the response speed of the cloud data center and makes more rational

use of resources, thus avoiding unnecessary power consumption and waste of idle resources

[15-16].

Figure 1. Two stages of implementing LB

In the CC environment, the LB process can be completed in two different stages, as shown in

Figure 1. The different implementation stages of LB mechanism can be summed up as primary

distribution and redistribution. The initial assignment is to assign tasks to each physical node before

the tasks enter the node, so that the system can maintain an efficient running state. Reallocation is

completed during node operation [17-18].

3. Design of Dynamic LB Strategy

The dynamic LB strategy designed in this paper is a centralized strategy. A manager is set up in

the system to collect the load information of other execution nodes periodically and provide the

Distributed Processing System

47

target node query service for the nodes that need to balance the load. This manager is a node with

relatively high performance in the system and does not participate in the execution of tasks. Its

relationship with other nodes and its own functional modules are shown in Figure 2.

Figure 2. Node relationship diagram in the system

On the task execution nodes 1 and 2, the node needs to periodically collect its own load

information, perform load calculation according to the preset load index, and evaluate its status at a

certain time (sender, receiver, or neither sending nor receiving). If LB is required, it needs to

communicate with the manager, find the target node with which it can balance the load, send or

receive a part of the tasks, The node itself also sequentially executes the local task queues in the

ready state.

3.1. Selection of Load Index

The load index Li is the quantification of the node load evaluation standard, and it is an

important parameter of the dynamic LB strategy. The evaluation results of the current load

condition of a node are different depending on the selected load index. In any case, the selected load

index must accurately reflect the load status of the node. Only when the system can accurately

evaluate the current load status of each node can the node timely determine its current status (i.e.,

whether it is overloaded, lightly loaded or properly loaded), whether it needs to transfer tasks, and

its current role in the system (i.e., sender, receiver or not participating in task transfer activities);

However, if the load information of the node is not accurately evaluated, the node will not be able

to carry out LB activities in a timely manner, resulting in poor performance of the entire system.

3.2. Data Structure Table and Relevant Calculation of Nodes

Firstly, the relevant definitions and calculation methods are introduced as follows:

When the execution node of the system is put into use for the first time, the system administrator

will set an ideal initial load value for it. This value is obtained according to the hardware

configuration of each node and is recorded as HLi (I = 1,2,..., n). Generally, the higher the hardware

configuration, the larger the default value.

The dynamic load value is calculated according to the parameters of various aspects during the

operation of the node, and is recorded as kli (I = 1,2,..., n). The calculation formula is expressed as:

)()()()(432 iLViLViLViLVKL processmemoryiocpuii
 (1)

Distributed Processing System

48

Where VI is the scale parameter set by the system for the node, VI ∈ [0,1], and Σ VI = 1. For

different types of system applications, the settings of various parameters are different. In the

environment of web applications, the weight of memory resources and response time can be set to

be larger. LCPU (I), Lio (I), lmemory (I), lprocess (I) and lresponse (I) are the available load values

of a certain parameter of node i, which are CPU utilization, I / O utilization, memory utilization,

total number of processes and response time in turn. The purpose of dynamic load value is to

accurately reflect the load condition of the node and serve as the basis for predicting the future load

condition of the node.

According to the initial load value and dynamic load value of the node, the current load value li

of the node can be calculated. The calculation formula is as follows:

)(iiii HLKLEHLL
 (2)

The current load value li of a node is a measure of the load status of a node in the system, which

is used as a basis for locating a light load node when a heavy load node transfers tasks, and it is also

the basis for the system manager to generate the sending node table and the receiving node table.

The specific division method is as follows:

(1) When Li ≤ LT, the node is in light load state;

(2) When LT < Li <ht, the node is in the load state;

(3) When Li ≥ HT, the node is in the overload state.

The specific types and corresponding representation methods of nodes are shown in Table 1.

Table 1. Node status correspondence table

Current load status of node
Current role (type) of the

node

Representation in data

table

Heavy load Sender S

Light load Recipient R

Cargo-worthiness
OK Node (neither send nor

receive)
OK

The sender node needs to transfer a part of its own load and can no longer receive new tasks. The

receiver node can receive tasks transferred from other nodes, while the OK node has sufficient

resources to complete its current tasks, but can no longer receive new tasks.

4. Experimental Analysis of Application Strategy of Dynamic LB Model based on CC in DS

The decision support system implemented in this paper has eight ordinary nodes that perform

business. The hardware configuration of these eight nodes is not the same. The author selects 2, 4

and 7 nodes as the representative nodes of each performance for analysis, and intercepts the

operation data of these three nodes in the same period of time from the respective load result tables

saved during the operation of these three nodes, The load time and CPU utilization time curves of

these three nodes are drawn.

The load time diagram corresponding to these three nodes is shown in Figure 3. Where, the

horizontal axis represents the time, the vertical axis represents the number of loads (that is, the

number of tasks), the horizontal axis sets the start time to 0, and the interval time to 5 × 2 seconds,

Distributed Processing System

49

the interception time length is 360 seconds, and the vertical axis is set with the initial load number

of 0 and the interval number of 100.

Figure 3. Load time diagram of different nodes

It can be seen from Fig. 3 that the loads of these three nodes are neither too heavy nor too light at

the same time, which indicates that by using the dynamic LB strategy, the loads of each node can

maintain a good balance effect at the same time. The CPU utilization time curve corresponding to

these three nodes is shown in Figure 4. Where, the horizontal axis represents time, and the vertical

axis represents CPU utilization. The setting of the horizontal axis is the same as that of the load

time graph, and the same time data is intercepted. The vertical axis sets the initial utilization rate as

0 and the interval number as 0.2.

Figure 4. CPU utilization of different nodes - time chart

It can be seen from Fig. 4 that the CPU utilization of these three nodes is also relatively average,

and there is no case that one node is too busy and the other node is too busy at the same time. This

shows that all nodes perform tasks well and the task allocation is reasonable. In conclusion, the

0

100

200

300

400

500

600

0 10 20 30 40 50 60

N
u
m

b
er

 o
f

lo
ad

s

Interval time

Node 2 Node 4 Node 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45 50

C
P

U
 u

ti
li

za
ti

o
n

Interval time

Node 2 Node 4 Node 7

Distributed Processing System

50

dynamic LB algorithm designed in this paper has a good effect on the LB of each node in the

system.

5. Conclusion

In this paper, the application strategy of dynamic LB model based on CC in DS is studied.

Through the analysis of the operation results of each node in the system, it can be seen that the

improved dynamic LB strategy designed in this paper can adapt to the change of the load state of

the system, adjust the startup strategy in time, and reduce the system overhead to a certain extent.

The implementation effect of LB is good; The designed system is implemented, and the running

results of the system are analyzed to verify the stability and effectiveness of the strategy. This paper

adopts a centralized strategy. Although the workload of the manager has been reduced to a certain

extent, if there are many nodes, the workload of the manager will increase correspondingly, and it

needs to be further optimized; Although there are many researches on LB, there are still many

problems: there is no effective LB algorithm that can be applied to all DSs. Therefore, a lot of

research is needed on the application strategy of dynamic LB model in DSs.

Funding

This article is not supported by any foundation.

Data Availability

Data sharing is not applicable to this article as no new data were created or analysed in this

study.

Conflict of Interest

The author states that this article has no conflict of interest.

References

[1] Wallden M, Markidis S, Okita M, et al. Memory Efficient Load Balancing for Distributed

Large-Scale Volume Rendering Using a Two-Layered Group Structure. IEICE Transactions on

Information and Systems, 2019, E102.D(12):2306-2316.

[2] Alam M, Haidri R A, Shahid M. Resource Aware Load Balancing Model for Batch of Tasks

(BoT) with Best Fit Migration Policy on Heterogeneous Distributed Computing Systems.

International Journal of Pervasive Computing and Communications, 2020, 16(2):113-141.

[3] Cabrera A, Acosta A, Almeida F, et al. A heuristic technique to improve energy efficiency with

dynamic load balancing. Journal of Supercomputing, 2019, 75(3):1610-1624.

[4] Handur E. Particle Swarm Optimization for Load Balancing in Distributed Computing Systems

– A Survey. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 2021,

12(1S):257-265.

[5] Nakajo Y, Athavale J, Yoda M, et al. Dynamic Load Balancing Using Actual Workload Traces

Based on Central Processing Unit Temperatures. Journal of Electronic Packaging, 2019,

141(3):031014.1-031014.20.

[6] Al-Sayegh A, Sotelino E D. A New Row-Wise Parallel Finite Element Analysis Algorithm with

Distributed Processing System

51

Dynamic Load Balancing. International Journal of Earthquake and Impact Engineering, 2020,

3(2):120-142.

[7] Giordano A, Rango A D, Rongo R, et al. Dynamic Load Balancing in Parallel Execution of

Cellular Automata. IEEE Transactions on Parallel and Distributed Systems, 2021,

32(2):470-484.

[8] Huang J, Liu Y, Li R, et al. Optimal power allocation and load balancing for non-dedicated

heterogeneous distributed embedded computing systems. Journal of Parallel and Distributed

Computing, 2019, 130(AUG.):24-36.

[9] Perez A C, Acosta A, Almeida F, et al. A Dynamic Multi–Objective Approach for Dynamic Load

Balancing in Heterogeneous Systems. IEEE Transactions on Parallel and Distributed Systems,

2020, PP(99):1-1.

[10] Stephen B, Telford R, Galloway S. Non-Gaussian Residual based Short Term Load Forecast

Adjustment for Distribution Feeders. IEEE Access, 2020, PP(99):1-1.

[11] Khalid Y N, Aleem M, Ahmed U, et al. Troodon A machine-learning based load-balancing

application scheduler for CPU–GPU system. Journal of Parallel and Distributed Computing,

2019, 132(OCT.):79-94.

[12] Daraghmi E, Daraghmi Y A. Advanced Diffusion Approach To Dynamic Load-Balancing For

Cloud Storage. International Journal of Parallel and Distributed Systems and Networks, 2019,

10(2/3):01-13.

[13] Korndrfer J, Eleliemy A, Mohammed A, et al. LB4OMP: A Dynamic Load Balancing Library

for Multithreaded Applications. IEEE Transactions on Parallel and Distributed Systems, 2021,

PP(99):1-1.

[14] Kitsuwan N, Pavarangkoon P, Widiyanto H M, et al. Dynamic load balancing with learning

model for Sudoku solving system. Digital Communications and Networks, 2020, 6(1):108-114.

[15] Pei J, Hong P, Xue K, et al. Efficiently Embedding Service Function Chains with Dynamic

Virtual Network Function Placement in Geo-distributed Cloud System. IEEE Transactions on

Parallel and Distributed Systems, 2019, 30(99):2179-2192.

[16] Liu K Z, Teel A R, Sun X M, et al. Model-Based Dynamic Event-Triggered Control for Systems

With Uncertainty: A Hybrid System Approach. IEEE Transactions on Automatic Control, 2020,

PP(99):1-1.

[17] Haji L M, Zeebaree S, Ahmed O M, et al. Dynamic Resource Allocation for Distributed

Systems and Cloud Computing. Test Engineering and Management, 2020, 83(May-June

2020):22417 – 22426.

[18] Dwivedi K M, Osuch T, Trivedi G. High sensitive and large dynamic range quasi-distributed

sensing system based on slow-light -phase-shifted fiber Bragg gratings. Opto-Electronics

Review, 2019, 27(3):233-240.

