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Abstract: Traditional medical imaging detection methods still face issues such as 

insufficient precision in data processing efficiency, recognition accuracy, and early 

diagnosis capabilities. This paper constructs a medical information and health imaging 

detection system based on artificial intelligence technology. The system employs a 

stepwise modeling approach: firstly, convolutional neural networks (CNNs) are utilized for 

feature extraction and automatic segmentation of medical images; secondly, an attention 

mechanism is combined to enhance features in lesion areas; thirdly, a multi-modal deep 

fusion model integrates imaging data with patient structured information to improve the 

accuracy and reliability of diagnostic decisions; finally, an adaptive threshold algorithm 

optimizes detection results and enables visual presentation. Testing, using the LIDC-IDRI 

lung nodule image dataset as an example with a constructed training and validation set 

containing 5000 samples, shows that the system's average recognition accuracy stabilizes 

at 97.8%, and the average detection time is reduced to 2.3 seconds per case. This verifies 

the effectiveness and scalability of the method in automated and precise image detection. 

1. Introduction

Medical imaging holds a core position in disease diagnosis, treatment decision-making, and 

prognosis evaluation, with its analysis results directly impacting the accuracy and timeliness of 

clinical judgment. Traditional image detection methods heavily rely on manual interpretation, which 

is not only inefficient but also susceptible to subjective experience, often leading to incomplete 

identification or misjudgment when dealing with high-resolution images, large-scale data, and 

complex structural features. With the continuous advancement of medical information systems and 

image acquisition technologies, the volume and complexity of imaging data have increased 

dramatically, highlighting the demand for intelligent processing and precise identification, which 

imposes higher requirements for the automation and refinement of medical image analysis. 

The introduction of artificial intelligence provides new opportunities to address these bottlenecks. 

Deep learning technology possesses powerful feature extraction and pattern recognition capabilities, 
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enabling automatic identification of lesion areas and feature focusing within large-scale medical 

image data. Through hierarchical modeling with convolutional neural networks combined with 

feature enhancement via attention mechanisms, the model's accuracy in capturing pathological 

details is effectively improved. The introduction of multi-modal information fusion and adaptive 

optimization strategies enhances the model's generalization and decision-making capabilities, 

making the intelligent diagnosis system more feasible and stable in clinical applications, and 

providing reliable technical support for precision medicine and health management. 

The overall structure of this paper is arranged as follows: The first part is the introduction, 

describing the research background and significance; the second part covers related work, 

summarizing existing technical foundations and development trends in the field of medical image 

detection; the third part introduces the research methods, including system design ideas and model 

implementation; the fourth part presents the results and discussion, analyzing experimental 

performance and limitations; the fifth part is the conclusion, summarizing the research findings and 

proposing future directions for improvement. 

2. Related Work 

Medical information systems present multi-level and multi-source complex characteristics in the 

process of deep intelligent transformation. Research on data governance, security protection and 

intelligent modeling continues to expand, and its results directly affect the collaborative efficiency 

and decision-making scientificity of the medical system. Weng [1] aims to explore data quality 

management and improvement methods in medical information governance, and proposes a new 

secure Byzantine robust federated learning (DFAWFL) method to achieve Byzantine robustness in 

medical institution model training, and has applied and verified it in actual medical information 

systems. Yang et al. [2] conducted a comprehensive analysis and summary of relevant domestic and 

foreign literature, and reviewed the concept of medical information security, the objects, content, 

forms of education and the obstacles to education implementation. In combination with the current 

information technology and medical informatization background, they put forward suggestions to 

provide a reference for further information security education in the medical field. Chen and Shen 

[3] captured the relationship between medical text data through knowledge graphs and classified 

medical text data using the K nearest neighbor algorithm; in order to design the medical information 

query system as a whole, the system's overall technical architecture, functional modules, database 

and system security were studied. Wang et al. [4] proposed a series of targeted optimization 

strategies for medical information sharing in public hospitals, intending to provide useful insights 

for the high-quality development strategy of information-empowered hospitals. Chen and Tan [5] 

first introduced the definition and development of medical consortia, then elaborated on the 

construction plan of a remote cardiovascular disease medical information platform, including the 

network technology used, system platform architecture, remote medical functions, and applications. 

Sheikh et al. [6] believed it was necessary to establish a regulatory framework for the development, 

management, and procurement of AI and health information technology systems, foster 

public-private partnerships, and apply AI ethically and safely within the national health service. 

Wang et al. [7] integrated three theories or models of information-seeking behavior to construct the 

theoretical framework for their meta-analysis, emphasizing psychosocial, instrumental, contextual, 

and demographic factors. Abhisheka et al. [8] focused on how to use these imaging modalities to 

analyze, model, and process data for optimal treatment outcomes. Kaissis and Ziller [9] tested 

PriMIA using a real case where expert-level deep convolutional neural networks classified pediatric 

chest X-rays. Gichoya et al. [10] explored the potential mechanisms of AI models identifying race 

by investigating the impact of image corruption on model performance. Although existing research 
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has made breakthroughs in security mechanisms, system integration, and intelligent 

decision-making, shortcomings remain in cross-domain data governance standards, the 

trustworthiness of privacy computing, and the clinical interpretability of models. There is an urgent 

need to achieve deep integration of technology and medical applications through algorithm 

optimization and institutionalized regulation. 

3. Method 

3.1 Image Feature Extraction and Segmentation Model 

Image feature extraction and segmentation rely on the deep feature learning capability of CNNs. 

The network structure designed in this study adopts a multi-scale convolutional module to adapt to 

differences in lesion morphology and tissue structure. Input medical images undergo 

standardization and pixel intensity normalization before being fed into the convolutional layers of 

the network. Convolutional operations capture local spatial features. The convolution calculation 

process is defined as: 

Fi,j

(k)
=∑  m ∑  n Ii+m,j+n⋅Wm,n

(k) +b
(k)

(1) 

I is the input image, and W(k) is the weight of the k-th convolution kernel. This process extracts 

textures and edge structures at different levels, achieving a hierarchical representation of complex 

tissues. To avoid feature redundancy and gradient vanishing, the network introduces batch 

normalization and the ReLU activation function. The nonlinear transformation is expressed as: 

R(x)=max(0,x)(2) 

Subsequently, skip connections maintain high-resolution information, fusing shallow spatial 

information with deep semantic features. The segmentation part employs a U-shaped decoding 

structure, performing upsampling and pixel-by-pixel reconstruction on high-dimensional feature 

maps to output lesion probability maps. Model training uses a cross-entropy loss function combined 

with a Dice coefficient constraint to jointly optimize pixel-level classification accuracy. The loss 

function expression is: 
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1

N
∑  i [y

i
log(p

i
)+(1-y

i
)log(1-p

i
)]+λ(1-Dice)(3) 

After iterative training, the model accurately distinguishes abnormal areas from normal tissue, 

demonstrating high sensitivity and generalization capability in lung nodule, liver lesion, and other 

images. 

3.2 Optimization Process of the Attention Mechanism 

The attention mechanism achieves adaptive feature enhancement by learning the importance of 

different regions through the allocation of spatial and channel weights. After the feature map is 

output through the convolutional layer, it is mapped into three sets of vectors: Query (Q), Key (K), 

and Value (V). The attention weights are determined by the similarity between these vectors, 

calculated as: 

A(Q,K,V)=softmax(
QKT

√dk
)V(4) 

Q, K, V are the linear transformation results of the input features, and dk is the vector dimension. 

This weight matrix is used to reassign the feature representation, amplifying the response values of 
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discriminative lesion areas in the mapping space while dynamically suppressing background noise. 

In medical images, this differential mapping enhances mass edges, lesion textures, and tissue 

boundaries, thereby improving issues like blurred segmentation edges and false detections. 

To balance the integrity of spatial and channel information, the model further constructs a Hybrid 

Attention Module, capturing regional dependencies through spatial attention and combining it with 

channel attention to adjust feature channel weights. The weight update in the channel dimension is 

based on the joint description after global average pooling and max pooling. The weight calculation 

is: 

wc=σ(W2⋅δ(W1⋅[favg,fmax]))(5) 

σ is the Sigmoid function, δ is the ReLU activation, and W1, W2 are learnable parameter 

matrices. After optimization, the model accurately highlights abnormal areas in complex lesion 

images, significantly improving feature contrast and segmentation accuracy. 

3.3 Design of the Multi-modal Deep Fusion Algorithm 

The construction of the multi-modal deep fusion algorithm aims to integrate complementary 

information from medical images and structured health data, modeling potential pathological 

associations uniformly through deep learning. Image data, after being extracted by the 

convolutional network, forms a high-dimensional semantic feature tensor, reflecting the spatial 

hierarchy and regional differences of lesions. Data from electronic medical records and 

physiological monitoring contain dynamic health status and individual differences. To achieve a 

unified cross-modal representation, structured data undergoes vectorized embedding and nonlinear 

mapping, compressed into a latent subspace compatible with the image feature dimension, allowing 

it to participate in the joint learning process. 

The fusion stage employs a multi-path feature interaction structure, regulating the contribution 

ratio between imaging and clinical information through feature gating, attention weighting, and 

context reconstruction mechanisms. When the model identifies significant differences in image 

feature distribution, the system automatically increases the weights of highly relevant clinical 

variables, achieving dynamic information coupling and difference compensation. This design 

enables the fused representation to possess both visual sensitivity and semantic interpretability, 

reflecting the complex relationship between lesion morphological features and the patient's 

pathological background. The fused multi-modal features are input into a discriminative network 

for high-level semantic reasoning, used for lesion detection and health status classification. 

3.4 Detection Result Optimization 

An adaptive threshold algorithm optimizes detection results and regional visualization by 

dynamically adjusting thresholds to achieve precise segmentation for features with different 

intensity distributions. The algorithm calculates local statistics based on the grayscale differences 

and spatial correlations of the input feature map to estimate the threshold range, and iteratively 

updates weights for adaptive adjustment. This allows the algorithm to obtain stable responses for 

complex images with uneven contrast or blurred boundaries, without relying on fixed parameter 

configurations. The optimization module introduces multi-scale neighborhood analysis, jointly 

evaluating global brightness trends and local detail features to prevent threshold drift caused by 

strong noise. A feature weighting strategy sets different response thresholds in edge and non-edge 

areas, making boundary recognition more continuous and complete. The generated binary weight 

map is mapped back to the original image after morphological constraints and connectivity 

screening, achieving salient visual presentation of detected regions. The visualization module maps 
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different confidence levels based on color gradients, forming an intuitive regional heat distribution. 

Figure 1 shows the parameter distribution data of the adaptive threshold algorithm: 

 

Figure 1: Adaptive Threshold Algorithm Parameter Distribution Data 

4. Results and Discussion 

4.1 Model Performance Metric Analysis 

This test selected the LIDC-IDRI public lung nodule image library as the data source. After 

image segmentation, artifact removal, and normalization, 2500 cases each were randomly divided 

into training and validation sets, ensuring a balanced distribution of image features. The model used 

the CNN+Attention fusion structure built in this paper, and the Dense Convolutional Network 

(DenseNet), which has shown prominent application effects in recent years, was selected as the 

comparison algorithm. Both models ran under the same hardware environment, with a unified 

learning rate of 0.001, batch size of 16, and the Adam optimizer. During the testing phase, accuracy 

and average detection time were calculated for each image case. The results of 16 experimental 

rounds were statistically analyzed, taking the average and standard deviation for stability analysis. 

Figures 2 and 3 show the specific test data for recognition accuracy and detection time, 

respectively: 
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Figure 2: Specific Recognition Accuracy Results 

 

Figure 3: Detection Time Data 
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Test results show that the average recognition accuracy of CNN+Attention stabilizes at 97.8%, 

while DenseNet is about 97.0%, an improvement of approximately 0.8 percentage points. 

Regarding detection time, the model in this paper averages 2.3 seconds per case, about 0.5 seconds 

faster than DenseNet, with differences reaching 0.7 seconds in some rounds. The accuracy 

improvement stems from the attention mechanism enhancing the feature response in salient lesion 

areas, making classification more targeted. The lightweight design and feature sharing of the fusion 

structure reduce redundant calculations in convolutional layers, thereby significantly shortening 

detection time and achieving a balance between high precision and efficiency. 

4.2 System Advantages and Applicability 

The system demonstrates high recognition accuracy and short detection times in tests, reflecting 

its efficiency and stability in complex medical image analysis. The model maintains consistent 

performance across multiple detection rounds, indicating good generalization capability and clinical 

applicability. The network structure combined with the attention mechanism highlights key feature 

areas, improving the reliability of small lesion identification and providing precise auxiliary 

judgment for doctors. In clinical diagnosis, it can accelerate the decision-making process and reduce 

misdiagnosis and missed diagnosis. In health management, it enables dynamic monitoring of 

individual image changes and risk assessment, providing a basis for early intervention. 

4.3 Limitations Discussion 

The algorithm's limitations are primarily explored through multi-dimensional experimental 

comparisons, feature sensitivity analysis, and model interpretability evaluation, focusing on stability 

and generalization capability under conditions of sample imbalance, noise interference, and 

cross-device data migration. Parameter perturbation and multi-scenario validation reveal 

fluctuations in feature redundancy suppression, boundary recognition, and training convergence 

speed, suggesting that structural optimization and sample enhancement strategies still require 

improvement. Table 1 shows the results of the algorithm limitations discussion: 

Table 1: Algorithm Limitations Discussion Results 

Index 
Feature 

Redundancy Rate 

Parameter Convergence 

Deviation 

Transfer 

Stability 

Boundary Blur 

Degree 

Noise Sensitivity 

Coefficient 

1 0.42 0.15 0.68 0.33 0.57 

2 0.39 0.12 0.64 0.35 0.53 

3 0.47 0.18 0.61 0.37 0.55 

4 0.43 0.16 0.66 0.34 0.58 

5 0.45 0.14 0.63 0.36 0.56 

6 0.41 0.13 0.65 0.32 0.54 

The data in the table show certain fluctuations in feature redundancy rate and migration stability, 

indicating the model's limited structural adaptability to data from different domains. The parameter 

convergence deviation is small, indicating that the core optimization strategy is relatively stable. 

However, the high noise sensitivity coefficient indicates insufficient anti-interference ability. The 

overall analysis suggests that the algorithm still requires further optimization in feature 

sparsification and cross-domain robustness to achieve more reliable clinical application 

performance. 

5. Conclusion 

The medical information and health imaging detection system constructed based on artificial 
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intelligence technology achieves multi-level feature extraction, focus on key areas guided by 

attention, and efficient fusion of multi-modal information in medical image analysis, providing 

reliable support for the intelligent identification of complex images. The model exhibits strong 

adaptability in feature expression, enabling more sufficient capture of lesion area differences, which 

is significant for improving the sensitivity of early screening and decision-making accuracy. The 

system's visual detection results help clinical personnel intuitively understand the model's judgment 

logic, enhancing the interpretability of algorithm results and clinical trust. Meanwhile, this method 

possesses high transfer potential in general medical imaging scenarios and can be extended to 

multi-organ, multi-modal medical data analysis. Nevertheless, the algorithm still has shortcomings 

in cross-device data consistency, robustness under boundary-blurred images, and deep 

understanding of clinical semantic information. Future work could introduce self-supervised 

learning and causal inference mechanisms to strengthen the model's knowledge transfer, robustness, 

and interpretability. 
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