Welcome to Scholar Publishing Group

International Journal of Big Data Intelligent Technology, 2021, 2(4); doi: 10.38007/IJBDIT.2021.020403.

Image Processing Method for Automatic Identification of Carbon Nanotubes Based on SEM

Author(s)

Feigao Li

Corresponding Author:
Feigao Li
Affiliation(s)

Henan Polytechnic, Zhengzhou 450046, Henan, China

Abstract

Carbon nanotubes are typical one-dimensional materials that can be metals or semiconductors. At present, research on SEM image processing methods is becoming more and more common, so it is particularly meaningful to use SEM to automatically identify carbon nanotubes. In this paper, a scanning electron microscope-based automatic detection method for carbon nanotubes is proposed, and a method for classifying low-dimensional nanomaterials in scanning electron microscope (SEM) images is also presented. Based on the scanning electron microscope images of nanomaterials, the surface texture of the materials was extracted by the automatic detection technology of carbon nanotubes (CNTs). The test results show that the simulation results of SEM images of 10 different materials show that the classification accuracy of the method can reach 93.75%, which proves its effectiveness in practical engineering.

Keywords

Scanning Electron Microscopy, Carbon Nanotubes, Automatic Identification, Image Processing

Cite This Paper

Feigao Li. Image Processing Method for Automatic Identification of Carbon Nanotubes Based on SEM. International Journal of Big Data Intelligent Technology (2021), Vol. 2, Issue 4: 17-32. https://doi.org/10.38007/IJBDIT.2021.020403.

References

[1] Ghadyani G ,  Soufeiani L ,  Ochsner A . Angle dependence of the shear behaviour of asymmetric carbon nanotubes. Materials & Design, 2017, 116(feb.):136-143.

[2] Nakajima H ,  Morimoto T ,  Zhou Y ,  Kobashi K , Okazaki T . Nonuniform functional group distribution of carbon nanotubes studied by energy dispersive X-ray spectrometry imaging in SEM. Nanoscale, 2019, 11(44):21487-21492. https://doi.org/10.1039/C9NR07619K

[3] Mohana K V ,  Somanathan T ,  Manikandan E ,  Kumar T K , Uvarajan S . Neurotransmitter Dopamine Enhanced Sensing Detection Using Fibre-Like Carbon Nanotubes by Chemical Vapor Deposition Technique. J Nanosci Nanotechnol, 2018, 18(8):5380-5389. https://doi.org/10.1166/jnn.2018.15425

[4] Kim H S ,  Kim J H ,  Park S Y ,  Carbon nanotubes immobilized on gold electrode as an electrochemical humidity sensor. Sensors and Actuators, 2019, 300(Dec.):127049.1-127049.8. https://doi.org/10.1016/j.snb.2019.127049

[5] Hesabi M ,  Ghasemi G . A CAM-B3LYP DFT Investigation of Atenolol Adsorption on the Surface of Boron Nitride and Carbon Nanotubes and Effect of Surface Carboxylic Groups. Russian Journal of Physical Chemistry A, 2020, 94(8):1678-1693.

[6] Dhore V G ,  Rathod W S ,  Patil K N . Synthesis and Characterization of High Yield Multiwalled Carbon Nanotubes by Ternary Catalyst. Materials Today Proceedings, 2018, 5(2):3432–3437. https://doi.org/10.1016/j.matpr.2017.11.589

[7] Suslova E V ,  Savilov S V ,  Egorov A V ,  Lunin V V . Activation of the Surface of Carbon and Nitrogen-Doped Carbon Nanotubes by Calcium Nitrate: Catalytic Properties of Cobalt Supported Catalysts of the Fischer–Tropsch Process Based on Them. Kinetics and Catalysis, 2019, 60(1):87-95. https://doi.org/10.1134/S0023158419010129

[8] Mohammad M R ,  Ahmed D S ,  Mohammed M . Synthesis of Ag-doped TiO2 nanoparticles coated with carbon nanotubes by the sol–gel method and their antibacterial activities. Journal of Sol-Gel Science and Technology, 2019, 90(3):1-12. https://doi.org/10.1007/s10971-019-04973-w

[9] Karim-Nezhad G ,  Sarkary A ,  Khorablou Z ,  Dorraji P S . Electrochemical Analysis of Tryptophan using a Nanostructuring Electrode with Multi-walled Carbon Nanotubes and Cetyltrimethylammonium bromide Nanocomposite. Journal of Nanostructures, 2018, 8(3):266-275.

[10] L Bé ja r,  Huape E ,  Medina A ,  Mejía A A , Alfonso I . Study by SEM of Carbon Nanotubes Deposited by CVD Using Al 2 O 3 and TiO 2 as Catalysts. Microscopy and Microanalysis, 2019, 25(S2):2384-2385. https://doi.org/10.1017/S1431927619012650

[11] Tingkai, Zhao, Xianglin,  Coral-like amorphous carbon nanotubes synthesized by a modified arc discharge. Fullerenes, Nanotubes and Carbon Nanostructures, 2017, 25(6):359-362.

[12] Kord B ,  Jamshidi M ,  Hosseinihashemi S K . Effect of Multi-Walled Carbon Nanotubes on Viscoelastic Properties of PP/Reed Flour Composites. Journal of Polymers & the Environment, 2017, 25(4):1313-1320. https://doi.org/10.1007/s10924-016-0909-x

[13] Karimidost S ,  Moniri E ,  Miralinaghi M . Thermodynamic and kinetic studies sorption of 5-fluorouracil onto single walled carbon nanotubes modified by chitosan. Korean Journal of Chemical Engineering, 2019, 36(7):1115-1123. https://doi.org/10.1007/s11814-019-0292-0

[14] Devrim Y ,  Arica E D . Multi-walled carbon nanotubes decorated by platinum catalyst for high temperature PEM fuel cell. International Journal of Hydrogen Energy, 2019, 44(34):18951-18966.

[15]Anandhi, C, M,  Enhanced Biocompatibility of Multi-walled Carbon Nanotubes by Surface Modification: Future Perspectives for Drug Delivery System.. AIP Conference Proceedings, 2017, 1832(1):1-3. https://doi.org/10.1063/1.4980381

[16] Belgamwar S U ,  Pingale A D ,  Sharma N N . Investigation on electrical properties of Cu matrix composite reinforced by multi-walled carbon nanotubes. Materials Today: Proceedings, 2019, 18(7):3201-3208. https://doi.org/10.1016/j.matpr.2019.07.196

[17] Afsharpour M ,  Dini Z . One-Pot Functionalization of Carbon Nanotubes by WO 3 /MoO 3 Nanoparticles as Oxidative Desulfurization Catalysts. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27(3):198-205.

[18] Li X ,  Zhang Y ,  Chen S . Enhancement of CO_2 Desorption from Reinforced 2-(2-Aminoethylamine) Ethanol Aqueous Solution by Multi-walled Carbon Nanotubes. Energy & fuels, 2019, 33(JUL.):6577-6584.

[19] Paran S ,  Sahraeian R ,  Naderi G ,  Nonlinear elastoplastic behavior induced by multiwalled carbon nanotubes in the compatibilized low density polyethylene/poly(methyl hydrogen siloxane)-grafted perlite nanocomposites. Mechanics of materials, 2019, 136(SEP.):103066.1-103066.10.

[20] He B . Rapid Detection of Nitrofuran and Its Metabolites by Using Carboxylic Multi-walled Carbon Nanotubes Modified Glassy Carbon Electrode. International Journal of Electrochemical Science, 2018, 13(5):4171-4181. https://doi.org/10.20964/2018.05.50

[21] Javadi A H ,  Mirdamadi S ,  Shakhesi S . Process optimization and microstructural analysis of aluminum based composite reinforced by multi‐walled carbon nanotubes with various aspect ratios. Materialwissenschaft und Werkstofftechnik, 2017, 48(7):719-725. https://doi.org/10.1002/mawe.201600495

[22] Patel S C ,  Alam O ,  Zhang D ,  Layer-by-layer, ultrasonic spray assembled 2D and 3D chemically crosslinked carbon nanotubes and graphene. Journal of Materials Research, 2017, 32(2):370-382. https://doi.org/10.1557/jmr.2016.472