Welcome to Scholar Publishing Group

International Journal of Big Data Intelligent Technology, 2022, 3(4); doi: 10.38007/IJBDIT.2022.030402.

Research on Image Recognition for Small Sample

Author(s)

Mingyuan Xin and Ang Ling Weay

Corresponding Author:
Mingyuan Xin
Affiliation(s)

Malaysia University of Science and Technology (MUST), Kuala Lumpur, Malaysia

Abstract

This paper mainly analyzes the problems existing in image recognition technology, concentrating on the state of the research and current issues with picture identification in tiny sample space. This paper reviews the algorithms and frameworks proposed by scholars in small sample spatial image recognition technology in recent years and analyzes the existing research gaps.

Keywords

Convolutional Neural Network, Transfer Learning, Image Classification, Target Detection

Cite This Paper

Mingyuan Xin and Ang Ling Weay. Research on Image Recognition for Small Sample. International Journal of Big Data Intelligent Technology (2022), Vol. 3, Issue 4: 6-12. https://doi.org/10.38007/IJBDIT.2022.030402.

References

[1] X. Li, D. Chang, Z. Ma, Z. H. Tan, J. H. Xue, J. Cao, and J. Guo, Deep InterBoost Networks for Small-Sample Image Classification, Neurocomputing 456, 492 (2021).

[2] F. Zhu, Z. Ma, X. Li, G. Chen, J. T. Chien, J. H. Xue, and J. Guo, Image-Text Dual Neural Network with Decision Strategy for Small-Sample Image Classification, Neurocomputing 328, 182 (2019).

[3] A. Rozantsev, M. Salzmann, and P. Fua, Beyond Sharing Weights for Deep Domain Adaptation, IEEE Trans. Pattern Anal. Mach. Intell. 41, 801 (2019).

[4] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann, Contrastive Adaptation Network for Unsupervised Domain Adaptation, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2019-June, 4888 (2019).

[5] R. Xu, P. Liu, L. Wang, C. Chen, and J. Wang, Reliable Weighted Optimal Transport for Unsupervised Domain Adaptation, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 4393 (2020).

[6] K. Sohn, W. Shang, X. Yu, and M. Chandraker, Unsupervised Domain Adaptation for Distance Metric Learning, 7th Int. Conf. Learn. Represent. ICLR 2019 (2019).

[7] S. Cui, S. Wang, J. Zhuo, C. Su, Q. Huang, and Q. Tian, Gradually Vanishing Bridge for Adversarial Domain Adaptation, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 12452 (2020).

[8] G. Wei, C. Lan, W. Zeng, and Z. Chen, MetaAlign: Coordinating Domain Alignment and Classification for Unsupervised Domain Adaptation, 1, 16643 (2021).

[9] S. Li, J. Zhang, W. Ma, C. H. Liu, and W. Li, Dynamic Domain Adaptation for Efficient Inference, 7832 (2021).

[10] P. Russo, F. M. Carlucci, T. Tommasi, and B. Caputo, From Source to Target and Back: Symmetric Bi-Directional Adaptive GAN, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 8099 (2018).

[11] S. Ye, K. Wu, M. Zhou, Y. Yang, S. H. Tan, K. Xu, J. Song, C. Bao, and K. Ma, Light-Weight Calibrator: A Separable Component for Unsupervised Domain Adaptation, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 13733 (2020).

[12] X. Wang, A. Shrivastava, and A. Gupta, A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection, Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017 2017-Janua, 3039 (2017).

[13] Y. Bai, Y. Zhang, M. Ding, and B. Ghanem, SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 11217 LNCS, 210 (2018).

[14] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, Self-Attention Generative Adversarial Networks, Electron. Lett. 55, 459 (2019).

[15] G. Daras, A. Odena, H. Zhang, and A. G. Dimakis, Your Local GAN: Designing Two Dimensional Local Attention Mechanisms for Generative Models, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 14519 (2020).

[16] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Total Perform. Scorec. 159 (2020).

[17] Y. Zheng, D. Huang, S. Liu, and Y. Wang, Cross-Domain Object Detection through Coarse-to-Fine Feature Adaptation, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 13763 (2020).

[18] V. VS, V. Gupta, P. Oza, V. A. Sindagi, and V. M. Patel, MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object Detection, 4516 (2021).