Welcome to Scholar Publishing Group

Machine Learning Theory and Practice, 2022, 3(4); doi: 10.38007/ML.2022.030401.

Hybrid Leapfrog Algorithm in Feature Selection Optimization of Text Classification


Shiwei Chu

Corresponding Author:
Shiwei Chu

Forestry College of Beijing Forestry University, Beijing, China


The research of hybrid leapfrog algorithm has always been a hot spot. The performance of the classifier model can be improved by improving and optimizing the model. This paper proposes a fusion text semantic structure pattern recognition system based on hybrid leapfrog and support vector machine. The leapfrog algorithm is studied to improve the speed and accuracy of text classification feature selection. This paper mainly uses experimental design and data comparison to illustrate the performance of different algorithms in text classification. The experimental results show that MSFLA-FCM algorithm has great advantages in terms of average fitness value, the maximum fitness reaches 1.518, and the effect of text classification is significantly improved.


Hybrid Leapfrog Algorithm, Text Classification, Feature Selection, Optimal Application

Cite This Paper

Shiwei Chu. Hybrid Leapfrog Algorithm in Feature Selection Optimization of Text Classification. Machine Learning Theory and Practice (2022), Vol. 3, Issue 4: 1-8. https://doi.org/10.38007/ML.2022.030401.


[1] Assia Belherazem, Redouane Tlemsani: Boosting Convolutional Neural Networks Using a Bidirectional Fast Gated Recurrent Unit for Text Categorization. Int. J. Artif. Intell. Mach. Learn. 12(1): 1-20 (2022). https://doi.org/10.4018/IJAIML.308815

[2] Muhammad Azeem Sarwar, Mansoor Ahmed, Asad Habib, Muhammad Khalid, M. Akhtar Ali, Mohsin Raza, Shahid Hussain, Ghufran Ahmed: Exploiting Ontology Recommendation Using Text Categorization Approach. IEEE Access 9: 27304-27322 (2021). https://doi.org/10.1109/ACCESS.2020.3047364

[3] Ankita Dhar, Himadri Mukherjee, Niladri Sekhar Dash, Kaushik Roy: Text Categorization: Past And Present. Artif. Intell. Rev. 54(4): 3007-3054 (2021). https://doi.org/10.1007/s10462-020-09919-1

[4] Emin Borandag, Akin Özçift, Yesim Kaygusuz: Development of Majority Vote Ensemble Feature Selection Algorithm Augmented with Rank Allocation to Enhance Turkish Text Categorization. Turkish J. Electr. Eng. Comput. Sci. 29(2): 514-530 (2021). https://doi.org/10.3906/elk-1911-116

[5] V. Srilakshmi, K. Anuradha, Chigarapalle Shoba Bindu: Stochastic Gradient-CAViaR-Based Deep Belief Network for Text Categorization. Evol. Intell. 14(4): 1727-1741 (2021). https://doi.org/10.1007/s12065-020-00449-x

[6] Maximiliano García, Sebastián Maldonado, Carla Vairetti: Efficient n-Gram Construction for Text Categorization Using Feature Selection Techniques. Intell. Data Anal. 25(3): 509-525 (2021). https://doi.org/10.3233/IDA-205154

[7] Liriam Enamoto, Li Weigang, Geraldo P. Rocha Filho: Generic Framework for Multilingual Short Text Categorization Using Convolutional Neural Network. Multim. Tools Appl. 80(9): 13475-13490 (2021). https://doi.org/10.1007/s11042-020-10314-9

[8] Walid Cherif, Abdellah Madani, Mohamed Kissi: Text Categorization Based on a New Classification by Thresholds. Prog. Artif. Intell. 10(4): 433-447 (2021). https://doi.org/10.1007/s13748-021-00247-1

[9] Mohammad Alhawarat, Ahmad O. Aseeri: A Superior Arabic Text Categorization Deep Model (SATCDM). IEEE Access 8: 24653-24661 (2020). https://doi.org/10.1109/ACCESS.2020.2970504

[10] Huda Abdulrahman Almuzaini, Aqil M. Azmi: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization. IEEE Access 8: 127913-127928 (2020). https://doi.org/10.1109/ACCESS.2020.3009217

[11] Eniafe Festus Ayetiran: An Index-Based Joint Multilingual/Cross-Lingual Text Categorization Using Topic Expansion via BabelNet. Turkish J. Electr. Eng. Comput. Sci. 28(1): 224-237 (2020). https://doi.org/10.3906/elk-1901-140

[12] Fatima-Zahra El-Alami, Said Ouatik El Alaoui, Noureddine Ennahnahi: Deep Neural Models and Retrofitting for Arabic Text Categorization. Int. J. Intell. Inf. Technol. 16(2): 74-86 (2020). https://doi.org/10.4018/IJIIT.2020040104

[13] Edward Kai Fung Dang, Robert Wing Pong Luk, James Allan: Context-Dependent Feature Values in Text Categorization. Int. J. Softw. Eng. Knowl. Eng. 30(9): 1199-1219 (2020). https://doi.org/10.1142/S021819402050031X

[14] V. Srilakshmi, K. Anuradha, Chigarapalle Shoba Bindu: Optimized Deep Belief Network and Entropy-Based Hybrid Bounding Model for Incremental Text Categorization. Int. J. Web Inf. Syst. 16(3): 347-368 (2020). https://doi.org/10.1108/IJWIS-03-2020-0015

[15] Maciej Pachocki, Anna Wróblewska: Categorization of Persons Based on Their Mentions in Polish News Texts. J. Autom. Mob. Robotics Intell. Syst. 14(2): 42-49 (2020). https://doi.org/10.14313/JAMRIS/2-2020/19

[16] Mouhoub Belazzoug, Mohamed Touahria, Farid Nouioua, Mohammed Brahimi: An Improved Sine Cosine Algorithm to Select Features for Text Categorization. J. King Saud Univ. Comput. Inf. Sci. 32(4): 454-464 (2020). https://doi.org/10.1016/j.jksuci.2019.07.003

[17] Behzad Naderalvojoud, Ebru Akcapinar Sezer: Term evaluation metrics in imbalanced text categorization. Nat. Lang. Eng. 26(1): 31-47 (2020). https://doi.org/10.1017/S1351324919000317

[18] Mohamed Seghir Hadj Ameur, Riadh Belkebir, Ahmed Guessoum: Robust Arabic Text Categorization by Combining Convolutional and Recurrent Neural Networks. ACM Trans. Asian Low Resour. Lang. Inf. Process. 19(5): 66:1-66:16 (2020).https://doi.org/10.1145/3390092