Welcome to Scholar Publishing Group

Machine Learning Theory and Practice, 2023, 4(1); doi: 10.38007/ML.2023.040101.

Practice and Application of Fusion Machine Learning in Data Analysis


Sujuan Han

Corresponding Author:
Sujuan Han

Qinghai Normal University, Qinghai, China


Machine learning is a process in which computer is used to train and calculate input data and output results in a complex, multi task simulation. In data analysis, we can use machine learning to carry out experimental research and theoretical verification. In order to improve the ability of data analysis, we need to use machine learning and data mining methods to better process data. In this paper, experimental method and principal component analysis method are mainly used to test and discuss the fusion of machine learning in data analysis. The experimental results show that the CPU utilization rate in Scheme 4 is about 85% on average. The reason why the CPU of the Scribe center server is reduced is that after receiving data, there is less data to decompress, which reduces the CPU utilization.


Machine Learning, Data Analysis, Data Mining, System Design

Cite This Paper

Sujuan Han. Practice and Application of Fusion Machine Learning in Data Analysis. Machine Learning Theory and Practice (2023), Vol. 4, Issue 1: 1-8. https://doi.org/10.38007/ML.2023.040101.


[1]  K. Sailaja Kumar, H. K. Manoj, D. Evangelin Geetha:Twitter Data Analysis Using Hadoop and 'R' and Emotional Analysis Using Optimized SVNN. Comput. Syst. Sci. Eng. 44(1): 485-499 (2023).  

[2] Matin N. Ashtiani, Bijan Raahemi: Intelligent Fraud Detection in Financial Statements Using Machine Learning and Data Mining: A Systematic Literature Review. IEEE Access 10: 72504-72525 (2022). 

[3] Yu Kimura, Tatsunori Seki, Satoshi Miyata, Yusuke Arai, Toshiki Murata, Hiroyasu Inoue, Nobuyasu Ito:Hotspot analysis of COVID-19 infection using mobile-phone location data. Artif. Life Robotics 28(1): 43-49 (2023). 

[4] Mohammad Izadikhah, Reza Farzipoor Saen:Developing a linear stochastic two-stage data envelopment analysis model for evaluating sustainability of supply chains: a case study in welding industry. Ann. Oper. Res. 322(1): 195-215 (2023). 

[5]  Dominik Raabe, Reinhard Nabben, Daniel Memmert:Graph representations for the analysis of multi-agent spatiotemporal sports data. Appl. Intell. 53(4): 3783-3803 (2023).  

[6] Saad M. Darwish, Reham M. Essa, Mohamed A. Osman, Ahmed A. Ismail: Privacy Preserving Data Mining Framework for Negative Association Rules: An Application to Healthcare Informatics. IEEE Access 10: 76268-76280 (2022).  

[7] Seyed Hossein Razavi Hajiagha, Hannan Amoozad Mahdiraji, Shide Sadat Hashemi, Jose Arturo Garza-Reyes, Rohit Joshi:Public Hospitals Performance Measurement through a Three-Staged Data Envelopment Analysis Approach: Evidence from an Emerging Economy. Cybern. Syst. 54(1): 1-26 (2023).  

[8]  Mohammad Mehdi Hosseinzadeh, Sergio Ortobelli Lozza, Farhad Hosseinzadeh Lotfi, Vittorio Moriggia:Portfolio optimization with asset preselection using data envelopment analysis. Central Eur. J. Oper. Res. 31(1): 287-310 (2023).  

[9]  Sana Khanam, Safdar Tanweer, Syed Sibtain Khalid:Youtube Trending Videos: Boosting Machine Learning Results Using Exploratory Data Analysis. Comput. J. 66(1): 35-46 (2023). 

[10] Irani Hazarika, Anjana Kakoti Mahanta: Mining Maximal Frequent Rectangles. Adv. Data Anal. Classif. 16(3): 593-616 (2022). 

[11] Ali Hamdi, Khaled B. Shaban, Abdelkarim Erradi, Amr Mohamed, Shakila Khan Rumi, Flora D. Salim: Spatiotemporal Data Mining: a Survey on Challenges and Open Problems. Artif. Intell. Rev. 55(2): 1441-1488 (2022).  

[12] Clarisse Dhaenens, Laetitia Jourdan: Metaheuristics for Data Mining: Survey and Opportunities for Big Data. Ann. Oper. Res. 314(1): 117-140 (2022).  

[13] Tin C. Truong, Hai V. Duong, Bac Le, Philippe Fournier-Viger, Unil Yun: Frequent High Minimum Average Utility Sequence Mining with Constraints in Dynamic Databases Using Efficient Pruning Strategies. Appl. Intell. 52(6): 6106-6128 (2022).  

[14] Tamil Selvi M, Jaison B: Lemuria: A Novel Future Crop Prediction Algorithm Using Data Mining. Comput. J. 65(3): 655-666 (2022). https://doi.org/10.1093/comjnl/bxaa093

[15] Durgesh Samariya, Jiangang Ma: A New Dimensionality-Unbiased Score for Efficient and Effective Outlying Aspect Mining. Data Sci. Eng. 7(2): 120-135 (2022).  

[16] Esther Galbrun: The Minimum Description Length Principle for Pattern Mining: a Survey. Data Min. Knowl. Discov. 36(5): 1679-1727 (2022).  

[17] Steedman Jenkins, Stefan Walzer-Goldfeld, Matteo Riondato: SPEck: Mining Statistically-Significant Sequential Patterns Efficiently with Exact sampling. Data Min. Knowl. Discov. 36(4): 1575-1599 (2022).  

[18] Dmitrii Egurnov, Dmitry I. Ignatov: Triclusters of Close Values for the Analysis of 3D Data. Autom. Remote. Control. 83(6): 894-902 (2022).