Welcome to Scholar Publishing Group

Water Pollution Prevention and Control Project, 2022, 3(4); doi: 10.38007/WPPCP.2022.030402.

Water Environmental Pollution Risk Assessment and Water Pollution Dispersion Simulation by Integrating GIS and Random Forest Algorithm

Author(s)

Jinkuk Park

Corresponding Author:
Jinkuk Park
Affiliation(s)

Laboratoire de Maitrise des Energies Renouvelables (LMER), Bejaia 06000, Algerie

Abstract

Pollution poses a huge threat to the water ecosystem and human production and life, and emergency response to water pollution (WP) incidents has become an important issue. The simulation of the pollution dispersion process is particularly important, and the simulation results can provide an important reference for emergency rescue and emergency drills, helping to predict WP incidents and reduce the risk of accidents. With the development of computer technology and GIS technology, pollution dispersion simulation results can be expressed in numerical form or in the form of graphical data. In addition, this paper also combines the random forest (RF) algorithm to assess the risk of water environment pollution, analyze the characteristics of pollutant content in a river basin, and assess the health risk of groundwater quality in the basin. The results show that the contribution of carcinogenic risk of groundwater in the region is high for Cr in the dry period and as in the flat and abundant periods.

Keywords

Random Forest Algorithm, GIS Technology, Water Pollution Dispersion, Risk Contribution Rate

Cite This Paper

Jinkuk Park. Water Environmental Pollution Risk Assessment and Water Pollution Dispersion Simulation by Integrating GIS and Random Forest Algorithm. Water Pollution Prevention and Control Project (2022), Vol. 3, Issue 4: 11-19. https://doi.org/10.38007/WPPCP.2022.030402.

References

[1] Pezhman Gholamnezhad, Ali Broumandnia, Vahid Seydi. An inverse model-based multiobjective estimation of distribution algorithm using Random-Forest variable importance methods. Comput. Intell. (2022) 38(3): 1018-1056. https://doi.org/10.1111/coin.12315

[2] Valeria D'Amato, Rita Laura D'Ecclesia, Susanna Levantesi. ESG score prediction through RF algorithm. Comput. Manag. Sci. (2022) 19(2): 347-373. https://doi.org/10.1007/s10287-021-00419-3

[3] Josalin Jemima J., D. Nelson Jayakumar, S. Charles Raja, Venkatesh P. Proposing a Hybrid Genetic Algorithm based Parsimonious RF Regression (H-GAPRFR) technique for solar irradiance forecasting with feature selection and parameter optimization. Earth Sci. Informatics. (2022) 15(3): 1925-1942. https://doi.org/10.1007/s12145-022-00839-y

[4] Swati Chopade, Hari Prabhat Gupta, Rahul Mishra, Preti Kumari, Tanima Dutta. An Energy-Efficient River Water Pollution Monitoring System in Internet of Things. IEEE Trans. Green Commun. Netw. (2021) 5(2): 693- 702. https://doi.org/10.1109/TGCN.2021.3062470

[5] Syed Saqib Ali Kazmi, Mehreen Ahmed, Rafia Mumtaz, Zahid Anwar. Spatiotemporal Clustering and Analysis of Road Accident Hotspots by Exploiting GIS Technology and Kernel Density Estimation. Comput. J. (2022) 65(2): 155-176. https://doi.org/10.1093/comjnl/bxz158

[6] Victor Manuel Zezatti, Alberto Ochoa, Gustavo Urquiza, Miguel Basurto, Laura Castro, Juan Garcia. The Implementation of a Nickel-Electroless Coating in Heat Exchanger Pipes Considering the Problem of the Environmental Conditions ofthe Cooling Water Without Recirculation to Increase the Effectiveness Under Uncertainty. Int. J. Comb. Optim. Probl. Informatics. (2022) 13(4): 73-82.

[7] Mojtaba Barzegari, Liesbet Geris. Highly scalable numerical simulation of coupled reaction-Diffusion systems with moving interfaces. Int. J. High Perform. Comput. Appl. (2022) 36(2): 198-213. https://doi.org/10.1177/10943420211045939

[8] Hiromi Baba, Ryo Urano, Tetsuro Nagai, Susumu Okazaki. Prediction of self-diffusion coefficients of chemically diverse pure liquids by all-atom molecular dynamics simulations. J. Comput. Chem. (2022) 43(28): 1892-1 900. https://doi.org/10.1002/jcc.26975

[9] Konstantinos Petridis, Nikolaos Petridis. Diffusion of Innovations in Middle Eastern versus Western Markets: A Mathematical Computation Cellular Automata Simulation Model. Oper. Res. (2022) 22(2): 1597-1616. https://doi.org/10.1007/s12351-020-00598-y

[10] Angelika Zube, Dominik Kleiser, Alexander Albrecht, Philipp Woock, Thomas Emter, Boitumelo Ruf, lgor Tchouchenkov, Aleksej Buller, Boris Wagner, Ganzorig Baatar, Janko Petereit. Autonomously mapping shallow water environments under and above the water surface. Autom. (2022) 70(5): 482-495. https://doi.org/10.1515/auto-2021-0145

[11] Maria Gemel B. Palconit, Mary Grace Ann C. Bautista, Ronnie S. Concepcion II, Jonnel D. Alejandrino, Ivan Roy S. Evangelista, Oliver John Y. Alajas, Ryan Rhay P. Vicerra, Argel A. Bandala, EImer P. Dadios. Multi-Gene Genetic Programming of IoT Water Quality Index Monitoring from Fuzzified Model for Oreochromis niloticus Recirculating Aquaculture System. J Adv. Comput. Intell. Intell. Informatics. (2022) 26(5): 81 6-823.  https://doi.org/10.20965/jaciii.2022.p0816

[12] Mohammad Najafzadeh, Farshad Homaei, Hadi Farhadi. Reliability assessment of water quality index based on guidelines of national sanitation foundation in natural streams: integration of remote sensing and data-driven models. Artif. Intell. Rev. (2021) 54(6): 4619-4651. https://doi.org/10.1007/s10462-021-10007-1

[13] Richard G. Bower, Benedict D. Rogers, Matthieu Schaller. Massively Parallel Particle Hydrodynamics at Exascale. Comput. Sci. Eng. (2022) 24(1): 14-25. https://doi.org/10.1109/MCSE.2021.3134604

[14] Arturo Vargas, Thomas M. Stitt, Kenneth Weiss, Vladimir Z. Tomov, Jean-Sylvain Camier, Tzanio V. Kolev, Robert N. Rieben. Matrix-free approaches for GPU acceleration of a high-order finite element hydrodynamics application using MFEM, Umpire, and RAJA. Int. JL High Perform. Comput. Appl. (2022) 36(4): 492-509. https://doi.org/10.1177/10943420221100262

[15] Maan Al-Zareer. Tunable hydrodynamic focusing with dual-neodymium magnet-based microfluidic separation device. Medical Biol. Eng. Comput. (2022) 60(1): 47-60. https://doi.org/10.1007/s11517-021-02438-3

[16] Mikolaj Marciniak. Hydrodynamic limit of the Robinson-Schensted-Knuth algorithm. Random Struct. Algorithms. (2022) 60(1): 106-116. https://doi.org/10.1002/rsa.21016

[17] David Abramov, Joseph N. Burchett, Oskar Elek, Cameron Hummels, J. Xavier Prochaska, Angus G. Forbes. CosmoVis: An Interactive Visual Analysis Tool for Exploring Hydrodynamic Cosmological Simulations. IEEE Trans. Vis. Comput. Graph. (2022) 28(8): 2909-2925. https://doi.org/10.1109/TVCG.2022.3159630

[18] Taher Abbasiasl, Hande Eda Sutova, Soroush Niazi, Gizem Celebi , Zeynep Karavelioglu , Ufuk Gorkem Kirabali , Abdurrahim Yilmaz , Huseyin Uvet , Ozlem Kutlu, Sinan Ekici, Morteza Ghorbani, Ali Kosar : A Flexible Cystoscope Based on Hydrodynamic Cavitation for Tumor Tissue Ablation. IEEE Trans. Biomed. Eng. (2022) 69(1): 513-524. https://doi.org/10.1109/TBME.2021.3100542