Welcome to Scholar Publishing Group

Water Pollution Prevention and Control Project, 2022, 3(4); doi: 10.38007/WPPCP.2022.030406.

Deep Convolution Neural Network in Remote Sensing Monitoring of Water Source Pollution Sources

Author(s)

Sanders Eduard

Corresponding Author:
Sanders Eduard
Affiliation(s)

Kangwon Natl Univ, Chunchon 24341, Gangwon, South Korea

Abstract

In recent years, the eutrophication of Lake Reservoir type drinking water source areas has become increasingly prominent, posing a threat to people's health and sustainable socio-economic development, and preventing and controlling Lake Reservoir pollution is extremely urgent. Only by qualitative identification and quantitative analysis of the pollution sources of lake reservoir type water sources and tracing back to the main sources of pollutants can the main contradictions and key cruxes of drinking water source pollution be clarified, scientific, effective and targeted comprehensive prevention and control countermeasures be put forward, and the safety guarantee ability and level of drinking water source areas be improved. Therefore, this paper establishes a water quality monitoring system based on the depth convolution neural network (CNN), obtains the remote sensing image of a lake by combining remote sensing technology, corrects the remote sensing image pixels through CNN algorithm, and helps to monitor the water quality of the lake area by analyzing the distribution of suspended solids, TP, TN in the image.

Keywords

Deep Convolution Neural Network, Drinking Water Source, Water Quality Monitoring, Remote Sensing Technology

Cite This Paper

Sanders Eduard. Deep Convolution Neural Network in Remote Sensing Monitoring of Water Source Pollution Sources. Water Pollution Prevention and Control Project (2022), Vol. 3, Issue 4: 47-55. https://doi.org/10.38007/WPPCP.2022.030406.

References

[1] Meysam Madadi, Sergio Escalera, Xavier Baro, Jordi Gonzalez. End-to-end global to local convolutional neural network learning for hand pose recovery in depth data. IET Comput. Vis. (2022) 16(1): 50-66. https://doi.org/10.1049/cvi2.12064

[2] Sudhakar Kumawat, Manisha Verma, Yuta Nakashima, Shanmuganathan Raman. Depthwise Spatio-Temporal STFT Convolutional Neural Networks for Human Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2022) 44(9): 4839-4851.

[3] Edwin Valarezo Anazco, Patricio Rivera Lopez, Tae-Seong Kim. Three-dimensional shape reconstruction of objects from a single depth view using deep U-Net convolutional neural network with bottle-neck skip connections. IET Comput. Vis. (2021) 15(1): 24-35. https://doi.org/10.1049/cvi2.12014 

[4] Dac-Nhuong Le, Velmurugan Subbiah Parvathy, Deepak Gupta, Ashish Khanna, JoelJ.P. C. Rodrigues, K. Shankar. loT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification. Int. J. Mach. Learn. Cybern. (2021) 12(11): 3235-3248. https://doi.org/10.1007/s13042-020-01248-7

[5] A. Anbarasi, Ravi Subban, Jothimani Vaishnavi, S. V. Suresh Babu Matla. Computer aided decision support system for mitral valve diagnosis and classification using depthwise separable convolution neural network. Multim. Tools Appl. (2021) 80(14): 21409-21424. https://doi.org/10.1007/s11042-021-10770-x

[6] Camille Schreck, Chris Wojtan. Coupling 3D Liquid Simulation with 2D Wave Propagation for Large Scale Water Surface Animation Using the Equivalent Sources Method. Comput. Graph. Forum. (2022) 41(2): 343-353. https://doi.org/10.1111/cgf.14478

[7] Diana Tapia-Pacheco, Laura Liliana Villa-Vazquez, Miguel Angel Perez-Angon. Research networks on the access of DW in Mexico City (2004-2018). Scientometrics. (2021) 126(3): 2557-2573. https://doi.org/10.1007/s11192-020-03569-4

[8] Moti Girma Gemechu, Taye Alemayehu Huluka, Frank van Steenbergen, Yoseph Cherinet Wakjira, Simon Chevalking, Sam Wim Bastiaanssen. Analysis of Spatio -Temporal Variability of Water Productivity in Ethiopian Sugar Estates: using Open access Remote Sensing Source. Ann. GIS. (2020) 26(4): 395-405. https://doi.org/10.1080/19475683.2020.1812716

[9] Swati Chopade, Hari Prabhat Gupta, Rahul Mishra, Preti Kumari, Tanima Dutta. An Energy-Efficient River Water Pollution Monitoring System in Internet of Things. IEEE Trans. Green Commun. Netw. (2021) 5(2): 693- 702. https://doi.org/10.1109/TGCN.2021.3062470

[10] Simon Schreiner, Dubravko Culibrk, Michele Bandecchi, Wolfgang Gross, Wolfgang Middelmann. Soil monitoring for precision farming using hyperspectral remote sensing and soil sensors. Autom. (2021) 69(4): 325-335. https://doi.org/10.1515/auto-2020-0042

[11] Yohei Sawada, Toshio Koike, Eiji lkoma, Masaru Kitsuregawa. Monitoring and Predicting Agricultural Droughts for a Water-Limited Subcontinental Region by Integrating a Land Surface Model and Microwave Remote Sensing. IEEE Trans. Geosci. Remote. Sens. (2020) 58(1): 14-33. https://doi.org/10.1109/TGRS.2019.2927342

[12] Israel Ropo Orimoloye, Sonwabo Perez Mazinyo, Ahmed Mukalazi Kalumba, Werner Nel, Adepoju I. Adigun, Olusola . Ololade. Wetland shift monitoring using remote sensing and GIS techniques: landscape dynamics and its implications on Isimangaliso Wetland Park, South Africa. Earth Sci. Informatics. (2019) 12(4): 553-563. https://doi.org/10.1007/s12145-019-00400-4

[13] Yanga A. Willie, Rajendran Pillay, L. Zhou, Israel Ropo Orimoloye. Monitoring spatial pattern of land surface thermal characteristics and urban growth: A case study of King Williams using remote sensing and GIS. Earth Sci. Informatics (2019) 12(4): 447-464. https://doi.org/10.1007/s12145-019-00391-2

[14] Josue Pagan, Ramin Fallahzadeh, Mahdi Pedram, Jose L. Risco-Martin, Jose Manuel Moya, Jose L. Ayala, Hassan Ghasemzadeh. Toward Ultra-Low-Power Remote Health Monitoring: An Optimal and Adaptive Compressed Sensing Framework for Activity Recognition. IEEE Trans. Mob. Comput. (2019) 18(3): 658-673. https://doi.org/10.1109/TMC.2018.2843373

[15] Yiannis N. Kontos, Theodosios Kassandros, Konstantinos Perifanos, Marios Karampasis, Konstantinos L. Katsifarakis, Kostas D. Karatzas. Machine learning for groundwater pollution source identification and monitoring network optimization. Neural Comput. Appl. (2022) 34(22): 19515-19545. https://doi.org/10.1007/s00521-022-07507-8

[16] Marta Biancardi, Gianluca lannucci, Giovanni Villani: An evolutionary game on compliant and non-compliant firms in groundwater exploitation. Ann. Oper. Res. (2022) 318(2): 831-847. https://doi.org/10.1007/s10479-021-04297-5

[17] Emmanuelle Augeraud-Veron, Catherine Choquet, Eloise Comte, Moussa M. Diedhiou. A Game Theory Approach for the Groundwater Pollution Control. SIAM J. Control. Optim. (2022) 60(3): 1667-1689. https://doi.org/10.1137/19M1278223

[18] Mariam Taazzouzte, Abdessamad Ghafiri, Hassan Lemacha, Saida EI Moutaki, Imane Haidara. Mapping Intrinsic Vulnerability to Pollution Using the DRASTIC Method in the Temara Groundwater (Northwestern Morocco). Int. J. Agric. Environ. Inf. Syst. (2021) 12(4): 1-18. https://doi.org/10.4018/IJAEIS.293753