Welcome to Scholar Publishing Group

International Journal of Public Health and Preventive Medicine, 2023, 4(1); doi: 10.38007/IJPHPM.2023.040105.

Effects of Oxytocin on Drug Addiction and Its Relationship to Prosocial Behavior

Author(s)

Shuna Peng

Corresponding Author:
Shuna Peng
Affiliation(s)

Department of Psychology, Jiaying University, Meizhou, Guangdong, China

Abstract

The use of oxytocin may bring a new dawn to the treatment of drug addiction. This study first summarizes the neural mechanism of oxytocin affecting drug addiction from two aspects: synaptic plasticity and neural circuits. Furthermore, the theoretical hypothesis of oxytocin on addiction is reviewed, and strong evidence is made for the therapeutic effect of individual adolescent oxytocin pretreatment on drug addiction. The efficacy of oxytocin may be influenced by the effects of drug addiction on prosocial behavior. Models of prosocial behavior in rodents were also introduced to clarify the relationship between drug addiction and oxytocin and prosocial behavior. It is hoped that the review of this paper can do what can be done for researchers to understand the impact of oxytocin on drug addiction and its relationship with prosocial behavior.

Keywords

Oxytocin, Drug Addiction, Prosocial Behaviour, Neural Mechanisms

Cite This Paper

Shuna Peng. Effects of Oxytocin on Drug Addiction and Its Relationship to Prosocial Behavior. International Journal of Public Health and Preventive Medicine (2023), Vol. 4, Issue 1: 37-48. https://doi.org/10.38007/IJPHPM.2023.040105.

References

[1] Baracz, S. J., Everett, N. A., & Cornish, J. L. (2018). The impact of early life stress on the central oxytocin system and susceptibility for drug addiction: Applicability of oxytocin as a pharmacotherapy. Neuroence & Biobehavioral Reviews, 110, S0149763418302768-. https://doi.org/10.1016/j.neubiorev.2018.08.014.

[2] Bartal, B. A., Decety, J., & Mason, P. (2011). Empathy and Pro-Social Behavior in Rats. Science. https://xueshu.baidu.com/usercenter/paper/show?paperid=04a84e129d2af12ea9a19132884f0f53&site=xueshu_se&hitarticle=1.

[3] Bartal, B. A., Rodgers, D. A., Sarria, M. S. B., Decety, J., & Mason, P. (2014). Pro-social behavior in rats is modulated by social experience. ELife Sciences, 3. https://doi.org/10.7554/eLife.01385#.dpuf.

[4] Bowen, M. T., & Neumann, I. D. (2017a). Rebalancing the Addicted Brain: Oxytocin Interference with the Neural Substrates of Addiction. Trends in Neurosciences, 40(12), 691–708. https://doi.org/10.1016/j.tins.2017.10.003.

[5] Bowen, M. T., & Neumann, I. D. (2017b). The Multidimensional Therapeutic Potential of Targeting the Brain Oxytocin System for the Treatment of Substance Use Disorders. R. Hurlemann & V. Grinevich, Behavioral Pharmacology of Neuropeptides: Oxytocin, 35, 269–287. Springer International Publishing. https://doi.org/10.1007/7854_2017_17.

[6] Brown, C. H., Stern, J. E., Jackson, K. L. M., Bull, P. M., Leng, G., & Russell, J. A. (2005). Morphine withdrawal increases intrinsic excitability of oxytocin neurons in morphine-dependent rats. European Journal of Neuroscience, 21(2), 501–512. https://doi.org/10.1111/j.1460-9568.2005.03885.x.

[7] Clemens, K. J., Cornish, J. L., Hunt, G. E., & Mcgregor, I. S. (2007). Repeated weekly exposure to MDMA, methamphetamine or their combination: Long-term behavioural and neurochemical effects in rats. Drug & Alcohol Dependence, 86(2–3), 183–190. https://doi.org/10.1016/j.drugalcdep.2006.06.004.

[8] Dator DM (2020) Exploring the Relationship between Oxytocin, Risktaking, and Childhood Maltreatment. East Carolina University ProQuest Dissertations Publishing. 2020. 28400112. Retrieved from the Scholarship. http://hdl.handle.net/10342/8628.

[9] Dessoki, H. H., Abedlrasoul, H. A., Dawoud, M. E., Mohamed, A. M., & Soltan, M. R. (2023). Oxytocin level among patients with opioid use disorder and its correlation with personality traits and perceived childhood trauma. Middle East Current Psychiatry, 30(1), 20. https://doi.org/10.1186/s43045-023-00289-2.

[10] Dölen, G. (2015). Autism: Oxytocin, serotonin, and social reward. Social Neuroscience, 10(5), 450–465. https://doi.org/10.1080/17470919.2015.1087875

[11] El-Shinnawy, H., Sayed, R. H., Khalil, M. A., & Ayoub, D. R. (2021). Substance Dependence Comorbidity with Mental Disorders in Egyptian Young Adults. Addictive Disorders & Their Treatment, 20(1), 33–42. https://doi.org/10.1097/ADT.0000000000000208.

[12] First, M. B., Gaebel, W., Maj, M., Stein, D. J., Kogan, C. S., Saunders, J. B., Poznyak, V. B., Gureje, O., Lewis‐Fernández, R., Maercker, A., Brewin, C. R., Cloitre, M., Claudino, A., Pike, K. M., Baird, G., Skuse, D., Krueger, R. B., Briken, P., Burke, J. D., … Reed, G. M. (2021). An organization‐ and category‐level comparison of diagnostic requirements for mental disorders in ICD ‐11 and DSM ‐5. World Psychiatry, 20(1), 34–51. https://doi.org/10.1002/wps.20825.

[13] Hicks, C., Cornish, J. L., Baracz, S. J., Suraev, A., & Mcgregor, I. S. (2014). Adolescent pre-treatment with oxytocin protects against adult methamphetamine-seeking behavior in female rats. Addiction Biology. https://doi.org/10.1111/adb.12197.

[14] Hicks, C., Ramos, L., Dampney, B., Baracz, S. J., Mcgregor, I. S., & Hunt, G. E. (2016). Regional c-Fos expression induced by peripheral oxytocin administration is prevented by the vasopressin 1A receptor antagonist SR49059. Brain Research Bulletin, 127, 208–218. https://doi.org/10.1016/j.brainresbull.2016.10.005.

[15] Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience, 29(1), 565. https://doi.org/10.1146/annurev.neuro.29.051605.113009.

[16] Hyman, Steven, & E. (2005). Addiction: A Disease of Learning and Memory. American Journal of Psychiatry. https://xueshu.baidu.com/usercenter/paper/show?paperid=0cfa8f6e5f6241ab3d2f2f2cc45aa55a&site=xueshu_se.

[17] Joana, Carvalheiro, Ana, Seara-Cardoso, Ana, Raquel, Mesquita, Liliana, de, & and, S. (2019). Helping behavior in rats (Rattus norvegicus) when an escape alternative is present. Journal of Comparative Psychology (Washington, D.C. : 1983). https://doi.org/10.1037/com0000178.

[18] Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A., & Noguchi, J. (2010). Structural dynamics of dendritic spines in memory and cognition. Trends in Neurosciences, 33(3), 121–129. https://doi.org/10.1016/j.tins.2010.01.001.

[19] Kenney, J. W., & Gould, T. J. (2008). Modulation of Hippocampus-Dependent Learning and Synaptic Plasticity by Nicotine. Molecular Neurobiology, 38(1), 101–121. https://doi.org/10.1007/s12035-008-8037-9.

[20] King, C. E., Griffin, W. C., Luderman, L. N., Kates, M. M., Mcginty, J. F., & Becker, H. C. (2017). Oxytocin Reduces Ethanol Self-Administration in Mice. Alcoholism Clinical & Experimental Research, 41(5), 955–964. https://doi.org/10.1111/acer.13359.

[21] Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: A neurocircuitry analysis. The Lancet Psychiatry, 3(8), 760–773. https://doi.org/10.1016/S2215-0366(16)00104-8.

[22] Leong, K.-C., Cox, S., King, C., Becker, H., & Reichel, C. M. (2018). Oxytocin and Rodent Models of Addiction. International Review of Neurobiology.140, 201-247. https://doi.org/10.1016/bs.irn.2018.07.007.

[23] Levis, S. C., Mahler, S. V., & Baram, T. Z. (2021). The Developmental Origins of Opioid Use Disorder and Its Comorbidities. Frontiers in Human Neuroscience, 15, 601905. https://doi.org/10.3389/fnhum.2021.601905.

[24] Mobasher, M. W., Eid, H. F., Soliman, A. M., El-Hanafi, H. M., & El-Makawi, S. M. (2021). Serum Oxytocin Level among Male Patients with Opioid Dependence and Its Relation to Craving. Addictive Disorders & Their Treatment, 20(2), 132–140. https://doi.org/10.1097/ADT.0000000000000231.

[25] Mühlethaler, M., Charpak, S., & Dreifuss, J. J. (1984). Contrasting effects of neurohypophysial peptides on pyramidal and non-pyramidal neurones in the rat hippocampus. Brain Research, 308(1), 97–107. https://doi.org/10.1016/0006-8993(84)90921-1.

[26] Nardou, R., Lewis, E. M., Rothhaas, R., Xu, R., Yang, A., Boyden, E., & Dolen, G. (2019). Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature, 569(7754), 1–5. https://doi.org/10.1038/s41586-019-1075-9.

[27] Nobuya, Sato, Ling, Tan, Kazushi, Tate, Maya, & Okada. (2015). Erratum to: Rats demonstrate helping behavior toward a soaked conspecific. Animal Cognition. https://doi.org/10.1007/s10071-015-0906-9.

[28] Numan, M., & Young, L. J. (2016). Neural mechanisms of mother–infant bonding and pair bonding: Similarities, differences, and broader implications. Hormones and Behavior, 77, 98–112. https://doi.org/10.1016/j.yhbeh.2015.05.015.

[29] Okasha, T., Abd Elsamie, A., Azzam, H., Elserafi, D., Morsy, M., & Shorub, E. (2021). Emotional Regulation as a Mediating Factor in Substance Use Disorders. Addictive Disorders & Their Treatment, 20(3), 202–210. https://doi.org/10.1097/ADT.0000000000000241.

[30] Peris, J., Macfadyen, K., Smith, J. A., De Kloet, A. D., Wang, L., & Krause, E. G. (2017). Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. Journal of Comparative Neurology. https://doi.org/10.1002/cne.24116.

[31] Peters, S. T., Bowen, M. T., Bohrer, K., Mcgregor, I. S., & Neumann, I. D. (2016). Oxytocin inhibits ethanol consumption and ethanol-induced dopamine release in the nucleus accumbens. Addiction Biology, 702–711. https://doi.org/10.1111/adb.12362.

[32] Qi, J., Yang, J. Y., Song, M., Li, Y., Wang, F., & Wu, C. F. (2008). Inhibition by oxytocin of methamphetamine-induced hyperactivity related to dopamine turnover in the mesolimbic region in mice. Naunyn-Schmiedeberg’s Archives of Pharmacology, 376(6), 441–448. https://doi.org/10.1007/s00210-007-0245-8.

[33] Ramsewak, S., Putteeraj, M., & Somanah, J. (2020). Exploring substance use disorders and relapse in Mauritian male addicts. Heliyon, 6(8), e04731. https://doi.org/10.1016/j.heliyon.2020.e04731.

[34] Sarnyai, Z., Biro, E., Babarczy, E., Vecsernyes, M., Laczi, F., Szabo, G., Krivan, M., Kovacs, G., & Telegdy, G. (1992). Oxytocin modulates behavioural adaptation to repeated treatment with cocaine in rats. Neuropharmacology, 31(6), 593–598. https://doi.org/10.1016/0028-3908(92)90192-R.

[35] Sarnyai, Z., & Kovács, G. L. (2014). Oxytocin in learning and addiction: From early discoveries to the present. Pharmacology Biochemistry and Behavior, 119, 3–9. https://doi.org/10.1016/j.pbb.2013.11.019.

[36] Shahini, N., Talaei, A., Salimi, Z., Adinepour Sarab, M., Gholamzad, S., Teimouri, A., Hajebi Khaniki, S., & Kamkar, M. (2021). Temperament and character traits in substance use disorder in Iran: A case control study. BMC Psychology, 9(1), 138. https://doi.org/10.1186/s40359-021-00647-x.

[37] Suraev, A. S., Bowen, M. T., Ali, S. O., Hicks, C., Ramos, L., & Mcgregor, I. S. (2014). Adolescent exposure to oxytocin, but not the selective oxytocin receptor agonist TGOT, increases social behavior and plasma oxytocin in adulthood. Hormones & Behavior, 65(5), 488–496. https://doi.org/10.1016/j.yhbeh.2014.03.002