Welcome to Scholar Publishing Group

International Journal of Big Data Intelligent Technology, 2020, 1(1); doi: 10.38007/IJBDIT.2020.010106.

High Thermal Sensitivity Performance of Ferroelectric Vanadium Oxide Hybrid Process in Thermal Imaging Monitoring

Author(s)

Fang Bi

Corresponding Author:
Fang Bi
Affiliation(s)

Weifang University, Shandong, China

Abstract

Infrared focal plane array technology is a detector manufacturing technology that integrates a two-dimensional detector array on a focal plane with a multiplexed readout circuit. This research mainly discusses the high thermal sensitivity performance of the ferroelectric vanadium oxide hybrid process in thermal imaging monitoring. The choice of vanadium oxide as the material for the microbolometer is due to its high electrical resistivity, high electrical resistivity, easy manufacturing, etc., especially compatibility with silicon technology, easy mass production and low cost. In this study, a direct current magnetron sputtering technique was used to prepare undoped and Fe-doped vanadium oxide films on a glass substrate. By controlling the process parameters of magnetron sputtering, the purpose of controlling the square resistance value and resistance temperature sensitivity of the film is achieved. The vanadium target is a disc of metallic vanadium with a purity of 99.99%, a diameter of 80 mm, and a thickness of 4 mm. The specification of the patch used for doping is an Fe sheet with 99.99% purity and a size of 2mmx2.5mmx1mm. Place Fe flakes on the vanadium target, and control the concentration of doped Fe by the number of Fe flakes placed. In order to obtain high performance, the thermal array should be packaged in a vacuum envelope with an infrared emission window. Sensitive elements should not be connected to the sensitive elements of neighboring pixels to avoid thermal diffusion and loss of image resolution. When the rapid heat treatment temperature is increased to 500℃, the binding energy of the characteristic peak of V(2p3/2) drops to 516.03eV, which is in the range of VO2 binding energy (515.7-516.2eV). This research will promote the application of VO2 in thermal imaging monitoring.

Keywords

Thermal Imaging Monitoring, Ferroelectric Vanadium Oxide, Hybrid Process, High Thermal Sensitivity

Cite This Paper

Fang Bi. High Thermal Sensitivity Performance of Ferroelectric Vanadium Oxide Hybrid Process in Thermal Imaging Monitoring. International Journal of Big Data Intelligent Technology (2020), Vol. 1, Issue 1: 90-106. https://doi.org/10.38007/IJBDIT.2020.010106.

References

[1] Mikolajick T ,  Slesazeck S ,  Park M H , et al. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bulletin, 2018, 43(05):340-346. https://doi.org/10.1557/mrs.2018.92

[2] Singh D P ,  Kumar V ,  Kumar A , et al. Effect of graphene oxide interlayer electron-phonon coupling on the electro-optical parameters of a ferroelectric liquid crystal. Rsc Advances, 2017, 7(21):12479-12485. https://doi.org/10.1039/C6RA25126A

[3] Takahashi R ,  Lippmaa M . Thermally Stable Sr2RuO4 Electrode for Oxide Heterostructures.. Acs Appl Mater Interfaces, 2017, 9(25):21314-21321. https://doi.org/10.1021/acsami.7b03577

[4] Song C ,  Gao J ,  Liu J , et al. Atomically Resolved Edge States on a Layered Ferroelectric Oxide. ACS Applied Materials & Interfaces, 2020, 12(3):4150-4154.

[5] Yang Y ,  Liu Z ,  Ng W K , et al. An Ultrathin Ferroelectric Perovskite Oxide Layer for High-Performance Hole Transport Material Free Carbon Based Halide Perovskite Solar Cells. Advanced Functional Materials, 2019, 29(1):1806506.1-1806506.10.

[6] Liu W ,  Lin D ,  Chen Q , et al. Ferroelectric Polarization Enhancement of Proximity Sensing Performance in Oxide Semiconductor Field-Effect Transistors. ACS Applied Electronic Materials, 2020, 2(10):3443-3453.

[7] Chen Y H ,  Su C J ,  Hu C , et al. Effects of Annealing on Ferroelectric Hafnium Zirconium Oxide-Based Transistor Technology. IEEE Electron Device Letters, 2019, 40(3):467-470. https://doi.org/10.1109/LED.2019.2895833

[8] Si M ,  Xiao L ,  Ye P D . Ferroelectric Polarization Switching of Hafnium Zirconium Oxide in a Ferroelectric/Dielectric Stack. ACS Applied Electronic Materials, 2019, 1(5):745-751.

[9] Matveyev Y ,  V  Mikheev,  Negro V  D , et al. Polarization-dependent electric potential distribution across nanoscale ferroelectric Hf0.5Zr0.5O2 in functional memory capacitors. Nanoscale, 2019, 11(42):19814-19822. https://doi.org/10.1039/C9NR05904K

[10] Wang X W ,  Sun L Y ,  Wang X E , et al. A facile hot plate annealing at low temperature of Pb(Zr0.52Ti0.48)O3 thin films by sol–gel method and their ferroelectric properties. Journal of Materials Science: Materials in Electronics, 2018, 29(7):5660-5667. https://doi.org/10.1021/acsaelm.0c00702

[11] Liao W ,  Huang X ,  Coillie F V , et al. Processing of Multiresolution Thermal Hyperspectral and Digital Color Data: Outcome of the 2014 IEEE GRSS Data Fusion Contest. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 8(6):2984-2996.

[12] Ikehata M ,  Kawashita M . An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2017, 8(4):1073-1116.

[13] Roopaei M ,  Rad P ,  Choo K . Cloud of Things in Smart Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging. IEEE Cloud Computing, 2017, 4(1):10-15. https://doi.org/10.1109/MCC.2017.5

[14] Cho Y ,  Julier S J ,  Marquardt N , et al. Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging. Biomedical Optics Express, 2017, 8(10):4480-4503. https://doi.org/10.1364/BOE.8.004480

[15] Min S ,  Heo J ,  Kong Y , et al. Thermal Infrared Image Analysis for Breast Cancer Detection. Ksii Transactions on Internet & Information Systems, 2017, 11(2):1134-1147.

[16] Alkali A H ,  Saatchi R ,  Elphick H , et al. Thermal image processing for real-time non-contact respiration rate monitoring. Iet Circuits Devices & Systems, 2017, 11(2):142-148. https://doi.org/10.1049/iet-cds.2016.0143

[17] Lee E K ,  Viswanathan H ,  D  Pompili. Model-Based Thermal Anomaly Detection in Cloud Datacenters Using Thermal Imaging. IEEE Transactions on Cloud Computing, 2018, 6(99):330-343.

[18] Sousa E ,  Vardasca R ,  Teixeira S , et al. A review on the application of medical infrared thermal imaging in hands. Infrared Physics & Technology, 2017, 85(2017):315-323.

[19] Zhang S ,  Shang S ,  Han Y , et al. Ex VivoandIn VivoMonitoring and Characterization of Thermal Lesions by High-Intensity Focused Ultrasound and Microwave Ablation Using Ultrasonic Nakagami Imaging. IEEE Transactions on Medical Imaging, 2018, 37(7):1701-1710. https://doi.org/10.1109/TMI.2018.2829934

[20] Zadeh H G ,  Dadpay M ,  Namdari F , et al. Providing a model for the diagnosis of varicocele in the scrotum thermal images. Biomedical Research, 2017, 28(9):4049-4052.

[21] Yang F ,  D  Chen,  Guo Z F , et al. The application of novel nano-thermal and imaging techniques for monitoring drug microstructure and distribution within PLGA microspheres. International Journal of Pharmaceutics, 2017, 522(1-2):34-49.

[22] Yin X ,  Wang H ,  Jiang T , et al. Up-conversion luminescence properties and thermal effects of LaVO4:Er3+ under 1550 nm excitation. Materials Research Bulletin, 2017, 86(FEB.):228-233.

[23] Sniegowski M C ,  Erlanger M ,  Olson J . Thermal imaging of corneal transplant rejection. International Ophthalmology, 2017, 38(6):1-5.

[24] Stephanie, Bennett, Tarek, et al. Adaptive Eulerian Video Processing of Thermal Video: An Experimental Analysis. IEEE Transactions on Instrumentation and Measurement, 2017, 66(10):2516-2524. https://doi.org/10.1109/TIM.2017.2684518

[25] Shannon, Jidas. COMPACT THERMAL IMAGING. Intersec: The journal of international security, 2018, 28(9):20-22.

[26] Eugene, Nielsen. Thermal Imaging on Your Smartphone. S.W.A.T.: special weapons & tactics for the prepared American, 2017, 36(5):84-88.

[27] Larsson J ,  Jansson A ,  Karlsson P . Monitoring and evaluation of the wire drawing process using thermal imaging. The International Journal of Advanced Manufacturing Technology, 2019, 101(5):2121-2134. https://doi.org/10.1007/s00170-018-3021-7

[28] Soong R ,  Jenne A ,  Biswas R G , et al. Exploring the Maker Culture in Chemistry: Making an Affordable Thermal Imaging System for Reaction Visualization. Journal of Chemical Education, 2020, 97(10):3887-3891. https://doi.org/10.1021/acs.jchemed.0c00516