Welcome to Scholar Publishing Group

International Journal of Multimedia Computing, 2022, 3(3); doi: 10.38007/IJMC.2022.030303.

Biosensors in Testing Children's Food Quality and Quality Safety


Mallik Alassery

Corresponding Author:
Mallik Alassery

New Valley University, Egypt


In recent years, children's food safety has many problems, and it is particularly important to detect food quality and quality and safety in a timely and efficient manner. At present, the application of biosensors for food safety testing is becoming more and more extensive. Label-free, real-time, and highly sensitive bioassays are currently important technologies in the analysis of biology. In this paper, the optical waveguide lightmode spectroscopy (OWLS) biosensor is used to propose a biosensing detection method based on MEMS micromirror, and the concentration of glucose solution is directly detected by this method. Through the calculation and simulation, the relationship between the thickness of the waveguide film and the sensitivity is obtained. The refractive index sensitivity is proportional to the inverse ratio of the effective refractive index, and an extreme value appears during the period. The glucose solution was detected in TE mode and TM mode. The experimental results show that the solution concentration has a good linear relationship with the incident angle, and the sensitivity can reach 5 ng/m L, which is more sensitive than the traditional immunological detection method. The dynamic characteristics of the MEMS micromirrors were tested and analyzed. The method has the advantages of small volume, simple structure and no labeling, and can realize in-situ detection and avoid damage to protein activity. It is a protein-free optical detection method with great potential.


Grating Waveguide Mode Biosensor, Food Safety Product Detection, MEMS Micromirror

Cite This Paper

Mallik Alassery. Biosensors in Testing Children's Food Quality and Quality Safety. International Journal of Multimedia Computing  (2022), Vol. 3, Issue 3: 31-45. https://doi.org/10.38007/IJMC.2022.030303.


[1] Li Junhua, Kuang Dai Zhi, Feng Yonglan, et al. Glucose biosensor based on titanium dioxide/carbon nanotubes/chitosan nanocomposite film.Acta Inorganic Chemistry, 2011, 27 (11): 2172-2178. DOI:10.3724/SP.J.1105.2011.10085

[2] Wang W, Chen C, Qian M, et al. Aptamer biosensor for protein detection using gold nanoparticles. Analytical Biochemistry, 2008, 373(2):213-219.

[3] Mannino S, Cosio M S, Wang J. Organic-phase enzyme biosensor for moisture determination in food products. Analyst, 1994, 119(9):2001-2003. DOI:10.1039/an9941902001

[4] Subramanian A, Irudayaraj J, Ryan T. A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7. Biosensors & Bioelectronics, 2006, 21(7):998-1006. DOI:10.1016/j.bios.2005.03.007

[5] Campanella L, De S G, Favero G, et al. Two OPEEs (organic phase enzyme electrodes) used to check the percentage water content in hydrophobic foods and drugs. Analyst, 2001, 126(11):1923-8. DOI:10.1039/B104749N

[6] Kim E. Sapsford,, Avraham Rasooly, Chris R. Taitt, and, et al. Detection of Campylobacter and Shigella Species in Food Samples Using an Array Biosensor. Analytical Chemistry, 2004, 76(2):433-40. DOI:10.1021/ac035122z

[7] Chen S, Mooney M H, Elliott C T, et al. Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. Trac Trends in Analytical Chemistry, 2010, 29(11):1305-1315. DOI:10.1016/j.trac.2010.09.003

[8] Huai HX, Zhang XM, He XR, et al. Study and application of glutamic acid biosensors synergized by gold nanoparticles. Sensors and microsystems, 2010, 29 (2): 72-74.

[9] Tiefenthaler K, Lukosz W. Integrated optical switches and gas sensors. Opt Lett, 1984, 9(4): 137-139. DOI:10.1364/OL.9.000137

[10] Wu C M, Jian Z C, Joe S F, et al.. High-sensitivity Sesnsor based on surface plasmon resonance and het-erodyne interferometry. Sensors and Actuators B: Chemical, 2003, 92(1): 133-136.

[11] H Huang, Y Chen. Label-free reading of microarray based proteins with high throughput surface plasmon resonance imaging. Biosensors and Bioelectronics, 2006, 22(5): 644-648. DOI:10.1016/j.bios.2006.01.025

[12] Yang Kun, Wang Xiangzhao, Bu Yang. Research progress of ellipsometer. Laser & Optoelectronics Progress, 2007, 44(3): 43-49.

[13] Hu Hui, Zhang Liping, Meng Fanying, et al. Application of spectroscopic ellipsometry for the study of electrical and optical properties of indium tin oxide thin films. Acta Optica Sinica, 2014, 34(10): 1031003. DOI:10.3788/AOS201434.1031003

[14] Wang J, Freiha B, Naser N, et al. Amperometric biosensing of organic peroxides with peroxidase-modified electrodes. Analytica Chimica Acta, 1991, 254(1-2):81. DOI:10.1016/0003-2670(91)90012-T

[15] Wang J, Dempsey E, Eremenko A, et al. Organic-phase biosensing of enzyme inhibitors. Analytica Chimica Acta, 1993, 279(2):203-208. DOI:10.1016/0003-2670(93)80318-F

[16] Sirkis J S, Zhang Z. Temperature-Compensated Long Period Grating Chemical Sensor. Optical Fiber Sensors. 1997:OWC38. https://doi.org/10.1364/OFS.1997.OWC38

[17] Gu Z, Xu Y, Gao K. Optical fiber long-period grating with solgel coating for gas sensor. Optics Letters, 2006, 31(16):2405-7. DOI:10.1364/OL.31.002405

[18] Wang J. Organic-phase biosensors-new tools for flow analysis: A short review. Talanta, 1993, 40(12):1905. DOI:10.1016/0039-9140(93)80114-7

[19] Wang J, Naser N, Kwon H S, et al. Tissue bioelectrode for organic-phase enzymatic assays. Analytica Chimica Acta, 1992, 264(1):7-12. DOI:10.1016/0003-2670(92)85290-M

[20] Jiangchuan. Application and research progress of biosensors in food analysis. Food and Drugs, 2004,6(8): 1-4.

[21] Carla C Rosa, Helder J Craz, Monica Vidal,et al. Optial biosensor based on nitrite reductase immobilized in controlled pore glass. Biosensors Bioelectronics,2002,17:45 - 52. DOI:10.1016/S0956-5663(01)00263-9

[22] Silva S D, Cosnier S, Almeida M G, et al. An efficient poly(pyrrole–viologen)-nitrite reductase biosensor for the mediated detection of nitrite. Electrochemistry Communications, 2004, 6(4):404-408. DOI:10.1016/j.elecom.2004.02.007

[23] Liu Y,Che Y,Li Y.Rapid detection of Salmonella typh-imurium using immunomagnetic separation and immuno-optical sensing method. Sensor Actuators B,2005,72: 214-218.

[24] Campanella L, Aturki Z, Sammartino M P, et al. Aspartate analysis in formulations using a new enzyme sensor. Journal of Pharmaceutical & Biomedical Analysis, 1995, 13(4-5):439. DOI:10.1016/0731-7085(95)01257-L

[25] Saverio Mannino, Cosio M S, JosephWang. Determination of Peroxide Value in Vegetable Oils by an Organic-Phase Enzyme Electrode. Analytical Letters, 1994, 27(2):299-308. DOI:10.1080/00032719408001074

[26] Itoh T, Shimomura T, Hayashi A, et al. Electrochemical enzymatic biosensor with long-term stability using hybrid mesoporous membrane. Analyst, 2014, 139(18):4654-4660. DOI:10.1039/c4an00975d

[27] Bagal-Kestwal D, Karve M S, Kakade B, et al. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity. Biosensors & Bioelectronics, 2009, 24(4):657-664. DOI:10.1016/j.bios.2008.06.027

[28] Si CY, Ye ZZ, Wang YX, et al. SPR biosensor for rapid detection of Escherichia coli O157:H7 . Spectroscopy and spectral analysis, 2011, 31 (10): 2598-2601. DOI:10.3964/j.issn.1000-0593(2011)10-2598-04

[29] Fan Sg. Application of biochip in food safety testing. International Food Safety Summit. 2008,236-237

[30] Miao S S,Wu M S,Ma L Y,et al. Electrochemiluminescence biosensor for determination of organophosphorous pesticides based on bimetallic Pt - Au / multi - walled carbon nanotubes modified electrode. Talant,2016,158: 142-151. DOI:10.1016/j.talanta.2016.05.030