Welcome to Scholar Publishing Group

Distributed Processing System, 2022, 3(4); doi: 10.38007/DPS.2022.030405.

Development of Distributed Remote Processing System Based on Net Remoting Technology

Author(s)

Jumine Kimi

Corresponding Author:
Jumine Kimi
Affiliation(s)

Vrije Universiteit Brussel, Belgium

Abstract

With the development of network technology, multimedia teaching has become an indispensable part of today's education, and remting is also a new type of remote processing server. The system is designed and implemented with java development framework and JS architecture. This topic mainly introduces the function modules such as management of simulation interactive single machine training center, database management and transaction logic engine based on net platform, and analyzes and explains them respectively. At the same time, the front-end page is designed and built in detail, including the scheme of web page layout and data access control and the application of related technologies. After that, this paper tests the operation and processing of the distributed remote processing system. The test results show that the IP address information is sent to the client through the serial port for interactive operation. At the same time, it can also receive the return command from the terminal device to support the normal 5-10S time control of the remote processing, and complete the analysis and test of the performance and function.

Keywords

Net Remoting Ttechnology, Distributed Remote Processing, System Development, Distributed System

Cite This Paper

Jumine Kimi. Development of Distributed Remote Processing System Based on Net Remoting Technology. Distributed Processing System (2022), Vol. 3, Issue 4: 36-44. https://doi.org/10.38007/DPS.2022.030405.

References

[1] Kristina Collins, Aidan Montare, Nathaniel Frissell, David Kazdan:Citizen Scientists Conduct Distributed Doppler Measurement for Ionospheric Remote Sensing. IEEE Geosci. Remote. Sens. Lett. 19: 1-5 (2022).

[2] Lenin Patricio Jiménez Jiménez, Fernando Darío Almeida García, Maria Cecilia Luna Alvarado, Gustavo Fraidenraich, Eduardo Rodrigues de Lima:A General CA-CFAR Performance Analysis for Weibull-Distributed Clutter Environments. IEEE Geosci. Remote. Sens. Lett. 19: 1-5 (2022).

[3] Sergio Moreno-Álvarez, Mercedes Eugenia Paoletti, Gabriele Cavallaro, Juan A. Rico-Gallego, Juan Mario Haut:Remote Sensing Image Classification Using CNNs With Balanced Gradient for Distributed Heterogeneous Computing. IEEE Geosci. Remote. Sens. Lett. 19: 1-5 (2022).

[4] David Schvartzman, Sebastián M. Torres, Tian-You Yu:Integration of the Motion-Compensated Steering and Distributed Beams' Techniques for Polarimetric Rotating Phased Array Radar. IEEE Geosci. Remote. Sens. Lett. 19: 1-5 (2022).

[5] Satendra Singh, Jaya Sreevalsan-Nair:Adaptive Multiscale Feature Extraction in a Distributed System for Semantic Classification of Airborne LiDAR Point Clouds. IEEE Geosci. Remote. Sens. Lett. 19: 1-5 (2022).

[6] Tanish P. Himani, Andrew S. Jones:Microwave Resolution Enhancement Using Distributed Small Spacecraft Architectures. IEEE Trans. Geosci. Remote. Sens. 60: 1-11 (2022).

[7] Nida Sakar, Marc Rodriguez-Cassola, Pau Prats-Iraola, Alberto Moreira:Sampling Analysis and Processing Approach for Distributed SAR Constellations With Along-Track Baselines. IEEE Trans. Geosci. Remote. Sens. 60: 1-12 (2022).

[8] Igor B. Furtat, Pavel A. Gushchin:Spatially Discrete Control of Scalar Linear Distributed Plants of Parabolic and Hyperbolic Types. Autom. Remote. Control. 82(3): 433-448 (2021).

[9] Engel M. Solnechnyi:Studying the Dynamic Properties of a Distributed Thermomechanical System and Stability Conditions for Its Control System. Autom. Remote. Control. 82(8): 1338-1357 (2021).

[10] Ragnar Mikael Halldórsson, Edlira Dushku, Nicola Dragoni:ARCADIS: Asynchronous Remote Control-Flow Attestation of Distributed IoT Services. IEEE Access 9: 144880-144894 (2021).

[11] Wadii Boulila, Mokhtar Sellami, Maha Driss, Mohammed Al-Sarem, Mahmood Safaei, Fuad A. Ghaleb:RS-DCNN: A novel distributed convolutional-neural-networks based-approach for big remote-sensing image classification. Comput. Electron. Agric. 182: 106014 (2021).

[12] Fernando Darío Almeida García, Henry Ramiro Carvajal Mora, Gustavo Fraidenraich, José Cândido Silveira Santos Filho:Square-Law Detection of Exponential Targets in Weibull-Distributed Ground Clutter. IEEE Geosci. Remote. Sens. Lett. 18(11): 1956-1960 (2021).

[13] Jón Atli Benediktsson, Zebin Wu:Distributed Computing for Remotely Sensed Data Processing. Proc. IEEE 109(8): 1278-1281 (2021).

[14] Juan Mario Haut, Mercedes Eugenia Paoletti, Sergio Moreno-Álvarez, Javier Plaza, Juan-Antonio Rico-Gallego, Antonio Plaza:Distributed Deep Learning for Remote Sensing Data Interpretation. Proc. IEEE 109(8): 1320-1349 (2021).

[15] Corneliu Octavian Dumitru, Gottfried Schwarz, Mihai Datcu:Semantic Labeling of Globally Distributed Urban and Nonurban Satellite Images Using High-Resolution SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 14: 6009-6068 (2021).

[16] Juan Carlos Merlano Duncan, Liz Martinez Marrero, Jorge Querol, Sumit Kumar, Adriano Camps, Symeon Chatzinotas, Björn E. Ottersten:A Remote Carrier Synchronization Technique for Coherent Distributed Remote Sensing Systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 14: 1909-1922 (2021).

[17] David Schvartzman, Sebastián M. Torres, Tian-You Yu:Distributed Beams: Concept of Operations for Polarimetric Rotating Phased Array Radar. IEEE Trans. Geosci. Remote. Sens. 59(11): 9173-9191 (2021).

[18] Radwa Mohamed Abdalaal, Carl Ngai Man Ho:Analysis and Validations of Modularized Distributed TL-UPQC Systems With Supervisory Remote Management System. IEEE Trans. Smart Grid 12(3): 2638-2651 (2021).