Welcome to Scholar Publishing Group

Kinetic Mechanical Engineering, 2023, 4(1); doi: 10.38007/KME.2023.040103.

Trajectory Tracking Control Method for Flexible Robot of Construction Machinery Based on Computer Vision


Yu Han

Corresponding Author:
Yu Han

Shenyang Jinbei Vehicle Manufacturing Co., LTD, Shenyang, Liaoning, China


For the application of computer vision, this paper proposes a combination of machine language coding method and wavelet neural network positioning method to build a robot intelligent system based on the motion trajectory of the manipulator. The solution can well solve the problems encountered by traditional robots in line tracking control. Research shows that the computer vision theory is used to design a learning toolbox that meets the task requirements and minimizes the time required to complete the task quickly and accurately. The MATLAB software simulation proves that this scheme is feasible. The test results show that the robot needs about 20 seconds in planning the route time, the time to bypass obstacles is within 5 seconds, and the error rate is about 2%.


Computer Vision, Construction Machinery, Flexible Robots, Trajectory Tracking

Cite This Paper

Yu Han. Trajectory Tracking Control Method for Flexible Robot of Construction Machinery Based on Computer Vision. Kinetic Mechanical Engineering (2023), Vol. 4, Issue 1: 20-29. https://doi.org/10.38007/KME.2023.040103.


[1] R. Punithavathi, A. Delphin Carolina Rani, K. R. Sughashini, Chinnarao Kurangi, M. Nirmala, Hasmath Farhana Thariq Ahmed, S. P. Balamurugan:Computer Vision and Deep Learning-enabled Weed Detection Model for Precision Agriculture. Comput. Syst. Sci. Eng. 44(3): 2759-2774 (2023).  

[2] Karim Malik, Colin Robertson, Steven A. Roberts, Tarmo K. Remmel, Jed A. Long:Computer vision models for comparing spatial patterns: understanding spatial scale. Int. J. Geogr. Inf. Sci. 37(1): 1-35 (2023).  

[3] Rabia Musheer Aziz, Nishq Poorav Desai, Mohammed Farhan Baluch:Computer vision model with novel cuckoo search based deep learning approach for classification of fish image. Multim. Tools Appl. 82(3): 3677-3696 (2023).  

[4] atrick M. Jensen, Niels Jeppesen, Anders B. Dahl, Vedrana Andersen Dahl:Review of Serial and Parallel Min-Cut/Max-Flow Algorithms for Computer Vision. IEEE Trans. Pattern Anal. Mach. Intell. 45(2): 2310-2329 (2023).  

[5] Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R. Martin, Ming-Ming Cheng, Shi-Min Hu:Attention mechanisms in computer vision: A survey. Comput. Vis. Media 8(3): 331-368 (2022).  

[6] Xiaolong Zou, Tie-Jun Huang, Si Wu:Towards a New Paradigm for Brain-inspired Computer Vision. Int. J. Autom. Comput. 19(5): 412-424 (2022).  

[7] Ngan Le, Vidhiwar Singh Rathour, Kashu Yamazaki, Khoa Luu, Marios Savvides:Deep reinforcement learning in computer vision: a comprehensive survey. Artif. Intell. Rev. 55(4): 2733-2819 (2022).  

[8] Altaf Alam, Zainul Abdin Jaffery, Himanshu Sharma:A cost-effective computer vision-based vehicle detection system. Concurr. Eng. Res. Appl. 30(2): 148-158 (2022). 

[9] Vahid Rakhshan, Alexandre Hideki Okano, Zhiyong Huang, Gianluca Castelnuovo, Abrahão F. Baptista:Biomedical Applications of Computer Vision Using Artificial Intelligence. Comput. Intell. Neurosci. 2022: 9843574:1-9843574:2 (2022).  

[10] Yousef O. Sharrab, Izzat Alsmadi, Nabil J. Sarhan:Towards the availability of video communication in artificial intelligence-based computer vision systems utilizing a multi-objective function. Clust. Comput. 25(1): 231-247 (2022).  

[11] George K. Thiruvathukal, Yung-Hsiang Lu:Efficient Computer Vision for Embedded Systems. Computer 55(4): 15-19 (2022).  

[12] Efstratios Kakaletsis, Charalampos Symeonidis, Maria Tzelepi, Ioannis Mademlis, Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas:Computer Vision for Autonomous UAV Flight Safety: An Overview and a Vision-based Safe Landing Pipeline Example. ACM Comput. Surv. 54(9): 181:1-181:37 (2022).  

[13] Runyu L. Greene, Ming-Lun Lu, Menekse S. Barim, Xuan Wang, Marie Hayden, Yu Hen Hu, Robert G. Radwin:Estimating Trunk Angle Kinematics During Lifting Using a Computationally Efficient Computer Vision Method. Hum. Factors 64(3): 482-498 (2022). 

[14] Gunjan Mukherjee, Arpitam Chatterjee, Bipan Tudu:A multi-channel convolutional neural network driven computer vision system towards identification of species and maturity stage of banana fruits: case studies with Martaman and Singapuri banana. Int. J. Comput. Intell. Stud. 11(1): 1-23 (2022).  

[15] Soumi Dhar, Shyamosree Pal:Surface Reconstruction: Roles in the Field of Computer Vision and Computer Graphics. Int. J. Image Graph. 22(1): 2250008:1-2250008:14 (2022).  

[16] Sugandha Arora, Trilok Mathur, Shivi Agarwal, Kamlesh Tiwari, Phalguni Gupta:Applications of fractional calculus in computer vision: A survey. Neurocomputing 489: 407-428 (2022).  

[17] Prathibha Varghese, G. Arockia Selva Saroja:An efficient hexagonal image framework using pseudo hexagonal pixel for computer vision applications. J. Intell. Fuzzy Syst. 42(4): 3879-3892 (2022). 

[18] Obed Appiah, Michael Asante, James Benjamin Hayfron-Acquah:Improved approximated median filter algorithm for real-time computer vision applications. J. King Saud Univ. Comput. Inf. Sci. 34(3): 782-792 (2022).