Welcome to Scholar Publishing Group

International Journal of Health and Pharmaceutical Medicine, 2023, 4(1); doi: 10.38007/IJHPM.2023.040110.

Application Progress of 3D Printing in the Field of Spine Surgery

Author(s)

Bing Gao and Xiaoqiang Huang

Corresponding Author:
Xiaoqiang Huang
Affiliation(s)

Department of Orthopedics, Xi’an Fifth Hospital, Xi’an 710082, China

Abstract

The application of 3D printing technology in the field of biomedicine has made breakthroughs in recent years, and it has achieved clinical three-dimensional manufacturing by breaking through the limitations of two-dimensional images such as computed tomography CT or magnetic resonance imaging (MRI) and has broad prospects in the field of spine surgery. The clinical application of 3D printing in spine surgery mainly involves preoperative planning and surgical simulation, model and implant fabrication, surgical aid guide fabrication and patient education, etc. This article will summarize the application status of 3D printing technology in the field of spine surgery and look forward to its future development.

Keywords

3D Printing, Spine Surgery, Additive Manufacturing

Cite This Paper

Bing Gao and Xiaoqiang Huang. Application Progress of 3D Printing in the Field of Spine Surgery. International Journal of Health and Pharmaceutical Medicine (2023), Vol. 4, Issue 1: 100-110. https://doi.org/10.38007/IJHPM.2023.040110.

References

[1] Barber, S.R., Jain, S., Son, Y.J. and Chang, E.H. (2018) Virtual Functional Endoscopic Sinus Surgery Simulation with 3D-Printed Models for Mixed-Reality Nasal Endoscopy. Otolaryngol Head Neck Surg. Nov; 159(5):933-7. https://doi.org/10.1177/0194599818797586

[2] Katkar, R.A., Taft, R.M. and Grant, G.T. (2018) 3D Volume Rendering and 3D Printing (Additive Manufacturing). Dent Clin North Am. Jul; 62(3):393-402. https://doi.org/10.1016/j.cden.2018.03.003

[3] Schubert, C., van Langeveld, M.C. and Donoso, L.A. (2014) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. Feb; 98(2):159-61. https://doi.org/10.1136/bjophthalmol-2013-304446

[4] Bagaria, V., Deshpande, S., Rasalkar, D.D., Kuthe, A. and Paunipagar, B.K. (2011) Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. Eur J Radiol. Dec; 80(3):814-20. https://doi.org/10.1016/j.ejrad.2010.10.007

[5] Benum, P., Aamodt, A. and Nordsletten, L. (2010) Customised femoral stems in osteopetrosis and the development of a guiding system for the preparation of an intramedullary cavity: a report of two cases. J Bone Joint Surg Br. Sep; 92(9):1303-5. https://doi.org/10.1302/0301-620X.92B9.24415

[6] Cui, X., Breitenkamp, K., Finn, M.G., Lotz, M. and D'Lima, D.D. (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. Jun; 18(11-12):1304-12. https://doi.org/10.1089/ten.tea.2011.0543

[7] Frame, M. and Huntley, J.S. (2012) Rapid prototyping in orthopaedic surgery: a user's guide. Scientific World Journal. 2012:838575. https://doi.org/10.1100/2012/838575

[8] Crafts, T.D., Ellsperman, S.E., Wannemuehler, T.J., Bellicchi, T.D., Shipchandler, T.Z. and Mantravadi, A.V. (2017) Three-Dimensional Printing and Its Applications in Otorhinolaryngology-Head and Neck Surgery. Otolaryngol Head Neck Surg. Jun;156(6):999-1010. https://doi.org/10.1177/0194599816678372

[9] Liao, J., Chen, Y., Chen, J., He, B., Qian, L., Xu, J., et al. (2019) Auricle shaping using 3D printing and autologous diced cartilage. Laryngoscope. Nov; 129(11):2467-74. https://doi.org/10.1002/lary.27752

[10] Kafle, A., Luis, E., Silwal, R., Pan, H.M., Shrestha, P.L. and Bastola, A.K. (2021) 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers (Basel). Sep 15; 13(18). https://doi.org/10.3390/polym13183101

[11] Zanjanijam, A.R., Major, I., Lyons, J.G., Lafont, U. and Devine, D.M. (2020) Fused Filament Fabrication of PEEK: A Review of Process-Structure-Property Relationships. Polymers (Basel). Jul 27;12(8). https://doi.org/10.3390/polym12081665

[12] Banerjee, S.S., Burbine, S., Kodihalli Shivaprakash, N. and Mead, J. (2019) 3D-Printable PP/SEBS Thermoplastic Elastomeric Blends: Preparation and Properties. Polymers (Basel). Feb 17; 11(2). https://doi.org/10.3390/polym11020347

[13] Mazzanti, V., Malagutti, L. and Mollica, F. (2019) FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers (Basel). Jun 28;11(7). https://doi.org/10.3390/polym11071094

[14] Wickramasinghe, S., Do, T. and Tran, P. (2020) FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects, and Treatments. Polymers (Basel). Jul 10; 12(7). https://doi.org/10.3390/polym12071529

[15] Zhang, Y., Hao, L., Savalani, M.M., Harris, R.A. and Tanner, K.E. (2008) Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites. J Biomed Mater Res A. Sep; 86(3):607-16. https://doi.org/10.1002/jbm.a.31622

[16] Charoo, N.A., Barakh Ali S.F., Mohamed, E.M., Kuttolamadom, M.A., Ozkan, T., Khan, M.A., et al. (2020) Selective laser sintering 3D printing - an overview of the technology and pharmaceutical applications. Drug Dev Ind Pharm. Jun; 46(6):869-77. https://doi.org/10.1080/03639045.2020.1764027

[17] Hossain, M.U. and Ng, S.T. (2020) Strategies for enhancing the accuracy of evaluation and sustainability performance of building. J Environ Manage. May 1; 261:110230. https://doi.org/10.1016/j.jenvman.2020.110230

[18] Mazzoli, A. (2013) Selective laser sintering in biomedical engineering. Med Biol Eng Comput. Mar; 51(3):245-56. https://doi.org/10.1007/s11517-012-1001-x

[19] Stoia, D.I., Linul, E. and Marsavina, L. (2019) Influence of Manufacturing Parameters on Mechanical Properties of Porous Materials by Selective Laser Sintering. Materials (Basel). Mar 15;12(6). https://doi.org/10.3390/ma12060871

[20] Simha Martynková, G., Slíva, A., Kratošová, G., Čech Barabaszová, K., Študentová, S., Klusák, J., et al. (2021) Polyamide 12 Materials Study of Morpho-Structural Changes during Laser Sintering of 3D Printing. Polymers (Basel). Mar 6; 13(5). https://doi.org/10.3390/polym13050810

[21] Curti, C., Kirby, D.J. and Russell, C.A. (2021) Stereolithography Apparatus Evolution: Enhancing Throughput and Efficiency of Pharmaceutical Formulation Development. Pharmaceutics. Apr 25; 13(5). https://doi.org/10.3390/pharmaceutics13050616

[22] Aliheidari, N., Christ, J., Tripuraneni, R., Nadimpalli, S. and Ameli, A. (2018) Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process. Materials & Design. Oct; 156:351-61. https://doi.org/10.1016/j.matdes.2018.07.001

[23] Melchels, F.P.W., Feijen, J. and Grijpma, D.W. (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials. Aug; 31(24):6121-30. https://doi.org/10.1016/j.biomaterials.2010.04.050

[24] Msallem, B., Sharma, N., Cao, S., Halbeisen, F.S., Zeilhofer, H.F. and Thieringer, F.M. (2020) Evaluation of the Dimensional Accuracy of 3D-Printed Anatomical Mandibular Models Using FFF, SLA, SLS, MJ, and BJ Printing Technology. J Clin Med. Mar 17; 9(3). https://doi.org/10.3390/jcm9030817

[25] Chae, M.P., Rozen, W.M., McMenamin, P.G., Findlay, M.W., Spychal, R.T. and Hunter-Smith, D.J. (2015) Emerging Applications of Bedside 3D Printing in Plastic Surgery. Front Surg. 2:25. https://doi.org/10.3389/fsurg.2015.00025

[26] Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., et al. (2015) Additive manufacturing. Continuous liquid interface production of 3D objects. Science. Mar 20; 347(6228):1349-52. https://doi.org/10.1126/science.aaa2397

[27] Tack, P., Victor, J., Gemmel, P. and Annemans, L. (2016) 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. Oct 21; 15(1):115. https://doi.org/10.1186/s12938-016-0236-4

[28] Francaviglia, N., Maugeri, R., Odierna Contino, A., Meli, F., Fiorenza, V., Costantino, G., et al. (2017) Skull Bone Defects Reconstruction with Custom-Made Titanium Graft shaped with Electron Beam Melting Technology: Preliminary Experience in a Series of Ten Patients. Acta Neurochir Suppl. 124: 137-41. https://doi.org/10.1007/978-3-319-39546-3_21

[29] Ploch, C.C., Mansi, C.S.S.A., Jayamohan, J. and Kuhl, E. (2016) Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning. World Neurosurg. Jun; 90:6 68-74. https://doi.org/10.1016/j.wneu.2016.02.081

[30] Randazzo, M., Pisapia, J.M., Singh, N. and Thawani, J.P. (2016) 3D printing in neurosurgery: A systematic review. Surg Neurol Int. 7(Suppl 33):S801-9. https://doi.org/10.4103/2152-7806.194059

[31] Eltorai, A.E.M., Nguyen, E. and Daniels, A.H. (2015) Three-Dimensional Printing in Orthopedic Surgery. Orthopedics. Nov; 38(11):684-7. https://doi.org/10.3928/01477447-20151016-05

[32] Wilcox, B., Mobbs, R.J., Wu, A.M. and Phan, K. (2017) Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg. Sep; 3(3):433-43. https://doi.org/10.21037/jss.2017.09.01

[33] D'Urso, P.S., Askin, G., Earwaker, J.S., Merry, G.S., Thompson, R.G., Barker, T.M., et al. (1999) Spinal biomodeling. Spine (Phila Pa 1976). Jun 15;24(12):1247-51. https://doi.org/10.1097/00007632-199906150-00013

[34] Sheha, E.D., Gandhi, S.D. and Colman, M.W. (2019) 3D printing in spine surgery. Ann Transl Med. Sep;7(Suppl 5): S164. https://doi.org/10.21037/atm.2019.08.88

[35] Cai, H., Liu, Z., Wei, F., Yu, M., Xu, N. and Li, Z. (2018) 3D Printing in Spine Surgery. Adv Exp Med Biol. 1093:345-59. https://doi.org/10.1007/978-981-13-1396-7_27

[36] Yang, M., Li, C., Li, Y., Zhao, Y., Wei, X., Zhang, G., et al. (2015) Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine (Baltimore). Feb; 94(8):e582. https://doi.org/10.1097/MD.0000000000000582

[37] Jug, M. (2021) A 3D-Printed Model-Assisted Cervical Spine Instrumentation after Tumor Resection in a 4-Year-Old Child: A Case Report. Pediatr Neurosurg. 56(3):254-60. https://doi.org/10.1159/000514248

[38] Xu, N., Wei, F., Liu, X., Jiang, L., Cai, H., Li, Z., et al. (2016) Reconstruction of the Upper Cervical Spine Using a Personalized 3D-Printed Vertebral Body in an Adolescent With Ewing Sarcoma: SPINE. Jan;41(1):E50-4. https://doi.org/10.1097/BRS.0000000000001179

[39] Yang, X., Wan, W., Gong, H. and Xiao, J. (2020) Application of Individualized 3D-Printed Artificial Vertebral Body for Cervicothoracic Reconstruction in a Six-Level Recurrent Chordoma. Turk Neurosurg. 30(1):149-55. https://doi.org/10.5137/1019-5149.JTN.25296-18.2

[40] Li, Y., Zheng, G., Liu, T., Liang, Y., Huang, J., Liu, X., et al. (2020) Surgical Resection of Solitary Bone Plasmacytoma of Atlas and Reconstruction with 3-Dimensional-Printed Titanium Patient-Specific Implant. World Neurosurg. Jul; 139:322-9. https://doi.org/10.1016/j.wneu.2020.04.041