Welcome to Scholar Publishing Group

International Journal of Health and Pharmaceutical Medicine, 2023, 4(1); doi: 10.38007/IJHPM.2023.040113.

Research Progress of Skeletal Muscle Injury Repair and Treatment Strategies


Tong Qian, Jiushe Kou, Saiqing Tang, Zhen Ruan and Panpan Guo

Corresponding Author:
Jiushe Kou

The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China


Skeletal muscle is the most abundant tissue in the human body. It has high adaptability and regenerative potential. Skeletal muscle injuries are very common in people's lives, often secondary to various acute and chronic injuries and diseases. There are three main stages in the repair and regeneration process: the destruction stage of the initial inflammatory response, the regeneration stage of muscle satellite cell (MSCs) activation and proliferation, and the remodeling stage of the maturation of regenerated muscle fibers, among which, muscle satellite cells reside in the body and are muscle stem cells required for skeletal muscle growth and repair of damaged muscle fibers. The repair process is controlled by complex and precise regulatory mechanisms, including the interaction of cells and cells, cells and matrix, and extracellular secretory factors. There are many clinical treatment options for skeletal muscle injury, including physical, drug, surgical therapy and various new therapies such as growth factor injection, muscle stem cell combined or without bio-scaffold transplantation, anti-fibrosis treatment, and medical ozone injection. This article reviews skeletal muscle regeneration mechanisms and repair methods, in order to help clinicians choose appropriate treatment methods, and promote the development and application of more effective treatment strategies.


Skeletal Muscle, Injury, Regeneration, Treatment, Review

Cite This Paper

Tong Qian, Jiushe Kou, Saiqing Tang, Zhen Ruan and Panpan Guo. Research Progress of Skeletal Muscle Injury Repair and Treatment Strategies. International Journal of Health and Pharmaceutical Medicine (2023), Vol. 4, Issue 1: 128-137. https://doi.org/10.38007/IJHPM.2023.040113.


[1] Cossu, G. and Sampaolesi, M. (2007) New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol. Med. 13, 520–526. 10.1016/j.molmed.2007.10.003.

[2] Serrano, A.L. and Muñoz-Cánoves, P. (2010) Regulation and dysregulation of fibrosis in skeletal muscle. Exp. Cell Res. 316, 3050–3058. 10.1016/j.yexcr.2010.05.035.

[3] Sambasivan, R., Yao, R., Kissenpfennig, A., Van Wittenberghe, L., Paldi, A., Gayraud-Morel, B., Guenou, H., Malissen, B., Tajbakhsh, S. and Galy, A. (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138, 3647–3656. 10.1242/dev.067587.

[4] Dumont, N.A., Bentzinger, C.F., Sincennes, M. and Rudnicki, M.A. (2015) Satellite Cells and Skeletal Muscle Regeneration. Compr. Physiol., 1027–1059. 10.1002/cphy.c140068.

[5] Rocheteau, P., Vinet, M. and Chretien, F. (2014) Dormancy and Quiescence of Skeletal Muscle Stem Cells. Results Probl. Cell Differ., 215–235. 10.1007/978-3-662-44608-9_10.

[6] Tidball, J.G. (1995) Inflammatory cell response to acute muscle injury. Med. Sci. Sports Exerc. 27, 1022–1032. 10.1249/00005768-199507000-00011.

[7] Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., van Rooijen, N., Plonquet, A., Gherardi, R.K. and Chazaud, B. (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204, 1057–1069. 10.1084/jem.20070075.

[8] Murach, K.A., Peck, B.D., Policastro, R.A., Vechetti, I.J., Van Pelt, D.W., Dungan, C.M., Denes, L.T., Fu, X., Brightwell, C.R., Zentner, G.E., et al. (2021) Early satellite cell communication creates a permissive environment for long-term muscle growth. iScience 24, 102372. 10.1016/j.isci.2021.102372.

[9] Hernández-Hernández, J.M., García-González, E.G., Brun, C.E., and Rudnicki, M.A. (2017) The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Skelet. Muscle Dev. 30th Anniv. MyoD 72, 10–18. 10.1016/j.semcdb.2017.11.010.

[10] Darby, I.A., Zakuan, N., Billet, F. and Desmoulière, A. (2015) The myofibroblast, a key cell in normal and pathological tissue repair. Cell. Mol. Life Sci. 73, 1145–1157. 10.1007/s00018-015-2110-0.

[11] Mann, C.J., Perdiguero, E., Kharraz, Y., Aguilar, S., Pessina, P., Serrano, A.L. and Muñoz-Cánoves, P. (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet. Muscle 1. 10.1186/2044-5040-1-21.

[12] Lømo, T. (2009) Neuromuscular Junction (NMJ): Activity-Dependent Muscle Fiber Modulation. In Encyclopedia of Neuroscience, L. R. Squire, ed. (Academic Press), pp. 559–568. 10.1016/B978-008045046-9.01267-5.

[13] Wang, X.H., Du, J., Klein, J.D., Bailey, J.L. and Mitch, W.E. (2009) Exercise ameliorates chronic kidney disease–induced defects in muscle protein metabolism and progenitor cell function. Kidney Int. 76, 751–759. 10.1038/ki.2009.260.

[14] Shirvani, H., Rahmati-Ahmadabad, S., Kowsari, E., Fry, H., Kazemi, M. and Kaviani, M. (2020) Effects of 2-week HMB-FA supplementation with or without eccentric resistance exercise on expression of some genes related to muscle protein turnover and serum irisin and IGF-1 concentrations. Gene 760, 145018. 10.1016/j.gene.2020.145018.

[15] Andrzejewski, W., Kassolik, K., Kobierzycki, C., Grzegrzolka, J., Ratajczak-Wielgomas, K., Jablonska, K., Halski, T., Dziegiel, P., Gworys, B. and Podhorska-Okolow, M. (2015) Increased skeletal muscle expression of VEGF induced by massage and exercise. Folia Histochem. Cytobiol. 53, 145–151. 10.5603/fhc.a2015.0013.

[16] Baoge, L., Van Den Steen, E., Rimbaut, S., Philips, N., Witvrouw, E., Almqvist, K.F., Vanderstraeten, G. and Vanden Bossche, L.C. (2012) Treatment of Skeletal Muscle Injury: A Review. ISRN Orthop. 2012, 1–7. 10.5402/2012/689012.

[17] O’Grady, M., Hackney, A.C., Schneider, K., Bossen, E., Steinberg, K., Douglas, J.M., Murray, W.J. And Watkins, W.D. (2000) Diclofenac sodium (Voltaren) reduced exercise-induced injury in human skeletal muscle. Med. Sci. Sports Exerc. 32, 1191–1196. 10.1097/00005768-200007000-00001.

[18] Paoloni, J.A., Milne, C., Orchard, J. and Hamilton, B. (2009) Non-steroidal anti-inflammatory drugs in sports medicine: guidelines for practical but sensible use. Br. J. Sports Med. 43, 863–865. 10.1136/bjsm.2009.059980.

[19] Rahusen, F.T.G., Weinhold, P.S. and Almekinders, L.C. (2004) Nonsteroidal Anti-inflammatory Drugs and Acetaminophen in the Treatment of an Acute Muscle Injury. Am. J. Sports Med. 32, 1856–1859. 10.1177/0363546504266069.

[20] Trappe, T.A., White, F., Lambert, C.P., Cesar, D., Hellerstein, M. and Evans, W.J. (2002) Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis. Am. J. Physiol.-Endocrinol. Metab. 282, E551–E556. 10.1152/ajpendo.00352.2001.

[21] Klinkenberg, M., Fischer, S., Kremer, T., Hernekamp, F., Lehnhardt, M. and Daigeler, A. (2013) Comparison of Anterolateral Thigh, Lateral Arm, and Parascapular Free Flaps with Regard to Donor-Site Morbidity and Aesthetic and Functional Outcomes. Plast. Reconstr. Surg. 131, 293–302. 10.1097/prs.0b013e31827786bc.

[22] Stevanovic, M.V., Cuéllar, V.G., Ghiassi, A. and Sharpe, F. (2016) Single-stage Reconstruction of Elbow Flexion Associated with Massive Soft-Tissue Defect Using the Latissimus Dorsi Muscle Bipolar Rotational Transfer. Plast. Reconstr. Surg. - Glob. Open 4, e1066. 10.1097/gox.0000000000001066.

[23] Makarewich, C.A. and Hutchinson, D.T. (2016) Tendon Transfers for Combined Peripheral Nerve Injuries. Hand Clin. 32, 377–387. 10.1016/j.hcl.2016.03.008.

[24] Bertelli, J.A. and Ghizoni, M.F. (2016) Nerve and Free Gracilis Muscle Transfers for Thumb and Finger Extension Reconstruction in Long-standing Tetraplegia. J. Hand Surg. 41, e411–e416. 10.1016/j.jhsa.2016.08.003.

[25] Bianchi, B., Copelli, C., Ferrari, S., Ferri, A. and Sesenna, E. (2009) Free flaps: Outcomes and complications in head and neck reconstructions. J. Cranio-Maxillofac. Surg. 37, 438–442. 10.1016/j.jcms.2009.05.003.

[26] Subbiah, R., Cheng, A., Ruehle, M.A., Hettiaratchi, M.H., Bertassoni, L.E. and Guldberg, R.E. (2020) Effects of controlled dual growth factor delivery on bone regeneration following composite bone-muscle injury. Acta Biomater. 114, 63–75. 10.1016/j.actbio.2020.07.026.

[27] Menetrey, J., Kasemkijwattana, C., Day, C.S., Bosch, P., Vogt, M., Fu, F.H., Moreland, M.S. and Huard, J. (2000) Growth factors improve muscle healing in vivo. J. Bone Joint Surg. Br. 82-B, 131–137. 10.1302/0301-620x.82b1.0820131.

[28] Grasman, J.M., Do, D.M., Page, R.L. and Pins, G.D. (2015) Rapid release of growth factors regenerates force output in volumetric muscle loss injuries. Biomaterials 72, 49–60. 10.1016/j.biomaterials.2015.08.047.

[29] Rodriguez-Outeiriño, L., Hernandez-Torres, F., Ramirez de Acuña, F., Rastrojo, A., Creus, C., Carvajal, A., Salmeron, L., Montolio, M., Soblechero-Martin, P., Arechavala-Gomeza, V., et al. (2022) miR-106b is a novel target to promote muscle regeneration and restore satellite stem cell function in injured Duchenne dystrophic muscle. Mol. Ther. - Nucleic Acids 29, 769–786. 10.1016/j.omtn.2022.08.025.

[30] Montarras, D., Morgan, J., Collins, C., Relaix, F., Zaffran, S., Cumano, A., Partridge, T. and Buckingham, M. (2005) Direct Isolation of Satellite Cells for Skeletal Muscle Regeneration. Science 309, 2064–2067. 10.1126/science.1114758.

[31] Meng, J., Muntoni, F. and Morgan, J.E. (2011) Stem cells to treat muscular dystrophies – Where are we? Neuromuscul. Disord. 21, 4–12. 10.1016/j.nmd.2010.10.004.

[32] Sampaolesi, M., Blot, S., D’Antona, G., Granger, N., Tonlorenzi, R., Innocenzi, A., Mognol, P., Thibaud, J.-L., Galvez, B.G., Barthélémy, I., et al. (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444, 574–579. 10.1038/nature05282.

[33] Tedesco, F.S. and Cossu, G. (2012) Stem cell therapies for muscle disorders. Curr. Opin. Neurol. 25, 597–603. 10.1097/wco.0b013e328357f288.

[34] Tedesco, F.S., Dellavalle, A., Diaz-Manera, J., Messina, G. and Cossu, G. (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J. Clin. Invest. 120, 11–19. 10.1172/jci40373.

[35] Chen, C.-W., Corselli, M., Péault, B. and Huard, J. (2012) Human Blood-Vessel-Derived Stem Cells for Tissue Repair and Regeneration. J. Biomed. Biotechnol. 2012, 1–9. 10.1155/2012/597439.

[36] Sicari, B.M., Rubin, J.P., Dearth, C.L., Wolf, M.T., Ambrosio, F., Boninger, M., Turner, N.J., Weber, D.J., Simpson, T.W., Wyse, A., et al. (2014) An Acellular Biologic Scaffold Promotes Skeletal Muscle Formation in Mice and Humans with Volumetric Muscle Loss. Sci. Transl. Med. 6. 10.1126/scitranslmed.3008085.

[37] Valentin, J.E., Turner, N.J., Gilbert, T.W. and Badylak, S.F. (2010) Functional skeletal muscle formation with a biologic scaffold. Biomaterials 31, 7475–7484. 10.1016/j.biomaterials.2010.06.039.

[38] Mase, V.J., Hsu, J.R., Wolf, S.E., Wenke, J.C., Baer, D.G., Owens, J., Badylak, S.F. and Walters, T.J. (2010) Clinical Application of an Acellular Biologic Scaffold for Surgical Repair of a Large, Traumatic Quadriceps Femoris Muscle Defect. Orthopedics 33. 10.3928/01477447-20100526-24.

[39] Li, Y., Li, J., Zhu, J., Sun, B., Branca, M., Tang, Y., Foster, W., Xiao, X. and Huard, J. (2007) Decorin Gene Transfer Promotes Muscle Cell Differentiation and Muscle Regeneration. Mol. Ther. 15, 1616–1622. 10.1038/sj.mt.6300250.

[40] Murphy, K., Muto, M., Steppan, J., Meaders, T. and Boxley, C. (2015) Treatment of Contained Herniated Lumbar Discs with Ozone and Corticosteroid: A Pilot Clinical Study. Can. Assoc. Radiol. J. 66, 377–384. 10.1016/j.carj.2015.01.003.

[41] Chiba, Y., Tanoue, G., Suto, R., Suto, W., Hanazaki, M., Katayama, H. and Sakai, H. (2017) Interleukin-17A directly acts on bronchial smooth muscle cells and augments the contractility. Pharmacol. Rep. 69, 377–385. 10.1016/j.pharep.2016.12.007.